IS-417 June 2008 update

Miguel Madurga madurga@iem.cfmac.csic.es

This document summarizes the current status of the analysis of the ¹¹Li β -decay data taken in 2007 at ISOLDE. The analysis concentrated in studying the ⁷He(gs) break-up channel following ¹¹Li β -decay. Two levels in ¹¹Be at 16 and 18 MeV excitation energy have been found to contribute to this channel. The study of the angular correlations and kinematics of the breakup of these two states through this channel favors a spin and parity assignment of $3/2^-$ for both of them. The presence of unaccounted coincidence statistics indicates the possible role of other states in ¹¹Be.

Figure 1. Schematic view of the set-up used in IS417 in 2007. An example of ¹¹Li β -decay followed by $n\alpha^6$ He breakup is shown.

1 Introduction and experimental set-up

The ¹¹Li β -decay was measured at ISOLDE, CERN with a multiple DSSSD set-up optimized for the detection of charged particles in coincidence. The ¹¹Li β -delayed charged particle channels include $n\alpha^{6}$ He, $2\alpha 3n$, ⁸Li+t and ⁹Li+d[1, 2, 3]. The main goal of this run was to study our previously proposed new ¹¹Li β -delayed decay channel involving the ground state of ⁷He [4], which is a subset of the $n\alpha^{6}$ He channel.

The set-up consisted of 3 DSSSD and a prototype monolithic detector (for testing purposes) as shown in Fig. 1. The detectors on the back side of the carbon foil, DSSSD's D1 and D3, were 5 cm away from the foil, thus covering $\sim 4\%$ of 4π . DSSSD D2 was 3.7 cm away from the source, covering $\sim 7.2\%$ of 4π . The 64 detector elements of the monolithic detector have a combined angular efficiency of $\sim 1.8\%$ of 4π .

The geometry of the setup defines three possible types of two-particle coincidences, depending on which detectors were hit. Hits in DSSSD D2 and DSSSD D3 (see Fig. 1), classified as 180° coincidences, covered angles from 120° to 180° between the detected particles. Hits in DSSSD D1 and either DSSSD D2 or DSSSD D3, classified as 90° coincidences, covered angles from 31° to 149° between the detected particles. Finally, coincidences detected in the same detector, classified as 0° coincidences, covered angles from 0° to 50° between the detected particles for detectors D1 and between 0° and 68° for D2.

Figure 2. Left: 180° coincidences sum energy with a Monte-Carlo simulation of the decay shown on red dashed line. The simulation includes the different decay channels proposed in [4] plus the ⁷He+ α breakup of the 16.2 and 18.3 MeV states in ¹¹Be discussed in this summary. The different branching ratios were adjusted from the last experiment [4], except for the 16.2 and 18.3 MeV states in ¹¹Be decaying through ⁷He, which were adjusted directly to the intensity observed in Fig. 3b. Please see the text for further information on the discrepancies between the simulation and the data. Right: 180° coincidences scatter plot. There are two clear groupings of data along bands of 7/4 and 4/7 slopes, indication of ⁷He+ α breakup.

2 Analysis

2.1 180 coincidences

Following the work presented in [4], we first concentrate in 180° coincidences as defined above. The sum energy spectrum for 180° coincidences in 2007 data is shown in Fig. 2*a*, compared to the 2003 spectrum shown in the inset. The data from 2007 yielded 10 times more statistics than the on from 2003. There are four β -delayed particle channels in ¹¹Li that could possibly contribute to this spectrum, $n+\alpha+^{6}$ He, $2\alpha+3n$, ⁸Li+t and ⁹Li+d. The low recoil energy of the ⁹Li ions (≤ 160 keV) makes the last channel undetectable in our set-up. Given that the branching ratio of the ⁸Li+t channel is a factor of 40 smaller, accorgin to the published ratios [3, 6], than the ratios of the $2\alpha+3n$ and $n+\alpha+^{6}$ He channels, its contribution to the sum energy spectrum is expected to be very small, around 3% of coincidence events.

The scatter plot corresponding to the 180° coincidences is shown in Fig 2b. The main features observed in the scatter plot are the low energy grouping, corresponding

Figure 3. Left: 180° individual n, α and ⁶He energies plotted against the ¹¹Be excitation energy. Please bear in mind there are three horizontal points for each ¹¹Be excitation energy. The two dashed lines indicate the gate around the 11/7 band corresponding to breakup through ⁷He(gs). Right: ¹¹Be excitation energy corresponding to events gated on the band shown on the left. The red line corresponds to a Monte-Carlo simulation of two states at 16.2 and 18.3 MeV in ¹¹Be decaying through ⁷He(gs) including background components from 5-body breakup. The different components are shown with color code as shown in the legend.

to the 0.7 MeV peak in the sum energy spectrum, the transverse line, corresponding to the 2.2 MeV peak in the sum energy spectrum, and a broad distribution of points scattered at higher energies. Interestingly, some events in the broad distribution of points are seen grouping along two bands of 7/4 and 4/7 slope, as expected from a sequential break-up of states in ¹¹Be through the ⁷He(gs) resonance [4].

To further investigate the origin of these bands we used the individual neutron, α and ⁶He energies vs excitation energy in ¹¹Be plot for 180° coincidences, Fig. 3a. The neutron energy is calculated using energy and momentum conservation, assuming that the particle detected with the lowest energy is the ⁶He. The advantage of this plot is that, for sequential break-up of broad states, the first emitted particle will group along a line whose slope and offset are given by the fragment mass ratio to ¹¹Be and the Q value respectively. The obvious disadvantage is that most of the 180° events are α - α coincidences from the 5-body channel, which we cannot correctly identify in this way as we cannot calculate the energy of the three undetected neutrons. Therefore, the 5-body events scatter randomly in the plot and act like a background for any 3-body channel present. The 180° coincidence events in the 'fynbo' plot are shown in Fig. 3a. There are two distinct features of the plot. A

Figure 4. Left: 180° coincidences angular correlations for events gated on the 18.3 MeV state in ¹¹Be. The different simulations of the possible spins and parities are color coded as shown in the legend. Right: individual n, α and ⁶He energy for the same gate as in the left. The simulations have the same color code as in the left. χ^2 test of the simulations for both angular correlations and the individual energy plots favor a $3/2^-$ assignment for this level.

horizontal line at 10.6 MeV ¹¹Be excitation energy, corresponding to the break-up of the $5/2^-$ state at that energy in ¹¹Be and a line of 11/7 slope and 8.33 offset, which corresponds to α particles emitted in the break-up of ¹¹Be states through the ⁷He(gs) resonance. There are two groupings of data at around 16 MeV and 18 MeV in ¹¹Be, indicating the presence of states in ¹¹Be at this energies.

Having sorted out the ⁷He+ α from the remaining decay channels, it is trivial to select events from this decay channel. We used an 1 MeV wide gate on α particles which are on the 11/7 line on the 'fynbo' plot, shown by the two dotted lines in Fig. 3a. The ¹¹Be excitation energy for events on this gate and excitation energy greater than 12 MeV is shown in figure 3b. A Monte-Carlo simulation was performed including the decay of two levels, modeled using non-interfering single-channel Rmatrix formalism, on top of the 5-body 2α +3n channels acting as background. Currently the level centroids, 16.25 MeV and 18.3 MeV, and widths used, 0.55 and 1.0 MeV respectively (shown in Table 1), have been optimized to the data by hand. We currently use parameters from [6] for the 5-body break-up of the ¹¹Be state at around 18 MeV, which are different from those obtained fitting the peak observed in the ⁷He channel. Proper χ^2 analysis on the ⁷He channel should be done before any conclusion can be reached.

Figure 5. Left: 180° coincidences angular correlations for events gated on the 16.2 MeV state in ¹¹Be. The different simulations of the possible spins and parities are color coded as shown in the legend. In all the cases the contribution of the 18.3 MeV level in ¹¹Be was fixed to $3/2^-$, from Figs. 4 *a* and *b*. Right: individual n, α and ⁶He energy for the same gate as in the left. The simulations have the same color code as in the left. χ^2 test performed over the simulations for both angular correlations and individual energy favor a $3/2^-$ assignment.

To investigate the nature of the two levels decaying through ⁷He we studied their angular correlations and kinematics, comparing them to different simulations of the levels modifying their spin and parity. In all cases the spin and parity of the intermediate ⁷He state in the simulation is $3/2^-$, which is the tentative assignment from the last compilation [7]. Figure 4*a* shows the angular correlations for events gated around the 18.3 MeV state, and Figure 4*b* the individual n, α and ⁶He energy. Simulations are shown for different spins and parities, $1/2^-$ in black, $3/2^-$ in red and $5/2^-$ in green. χ^2 tests for the simulations for both the angular correlations and the decay kinematics, shown in Table 2, favor a $3/2^-$ assignment.

Figure 5a shows the angular correlations for events now gated on the 16.2 MeV peak, and 5b the individual n, α and ⁶He energy. This case is a little bit more complicated than the state at 18.3 MeV, as there are underlying contributions from 5-body breakup and from the ⁷He+ α break up of the state at 18.3 MeV. From the simulation shown in figure 3b one can calculate that 27% of the intensity in the gate around the 16.2 MeV state is from the ⁷He decay of the state at 18.3 MeV and 22% is 5-body break up of the same state. From the previous χ^2 analysis we can fix the spin and parity of the state at 18.3 MeV to $3/2^-$ and study the spin and parity of

Figure 6. Left: the contribution of the 3-body channels to the Monte-Carlo simulation, in red, is shown. Right: contribution of the 5-body channels to the Monte-Carlo simulation. Possible background influence apart from the $^{7}\text{Li}+\alpha$ peak at 1 MeV should be considered before the differences between data and simulation can be taken into account as new decay channels.

the state at 16.2 MeV alone, as shown in the different simulations on Figs. 5 *a* and *b*. Again χ^2 analysis of the different simulations, shown in Table 2, favors a $3/2^-$ spin and parity assignment for the 16.2 MeV state.

The red dashed line in Figs. 6 a and b corresponds to a Monte-Carlo simulation of the breakup of states in ¹¹Be including the previously known channels [1, 4] plus the ⁷He+ α breakup of the 18.3 and 16.2 MeV states discussed above. The three body breakup channels are shown in Fig. 6a while the five body are shown in Fig. 6b for clarity. There are three main discrepancies between the simulation and the data. First at ~1 MeV, where we expect the ⁷Li+ α breakup of ¹¹B to contribute but it has not been yet implemented in the simulation. Then, at ~ 2.5 MeV, which corresponds with a zone of increased statistics in the 7/4 and 4/7 bands Fig. 2b. This hints the presence of a state in ¹¹Be at around 11 MeV decaying through ⁷He(gs). However, no direct evidence is found in Fig. 3a, which is likely to be explained by incorrect ⁶He and α identification, thus preventing us to properly reconstruct the neutron energy. Finally, the experimental intensity at ~ 9 MeV is slightly higher than the simulation. This region is expected to be dominated by the breakup of the 18.3 MeV state in ¹¹Be through ⁷He, which was adjusted to the observed intensity in Fig. 3b. The discrepancy in statistics indicates the presence of a small contribution of another channel.

Table 1. Level centroid and reduced widths used in the R-Matrix description of th	e
states modeled in the Monte-Carlo code. The Γ was obtained from a gaussian fit of	of
the R-matrix peak directly.	

	$E_0 (MeV)$	$\gamma^2 (MeV)$	Γ (MeV)	Ref.
$^{11}\text{Be}(10.59 \text{ MeV})$	10.59	0.21	0.227	[5]
${}^{11}\text{Be}(16.2 \text{ MeV})$	16.25	0.05	0.55	
$^{11}Be(18.3 \text{ MeV})(3\text{-body})^{\dagger}$	18.3	0.1	1.0	
$^{11}Be(18.15 \text{ MeV})(5\text{-body})$	18.15	0.06	0.8	[6]
$^{10}\text{Be}(9.5 \text{ MeV})$	9.52(2)	0.21	0.30(4)	This work
$^{7}\mathrm{He}(\mathrm{gs})$	0.43^{\ddagger}	0.4	0.148(1)	[7]
$^{6}\mathrm{He}(2^{+})$	1.8	0.113	0.117(1)	[7]
$^{5}\mathrm{He}(\mathrm{gs})$	$0.895^{\$}$	2.5	0.658(4)	$\overline{[7]}$

[†] optimized to fit the ¹¹Be excitation energy reconstructed from the ⁷He channel (see text).

[‡] above the ${}^{6}\text{He} + \alpha$ threshold.

§ above the α +n threshold.

Summary and outlook for 180 coincidences. 2.2

The analysis of 180° coincidences confirms and expands previous findings [4]. The presence of ¹¹Be three body breakup through the ground state of ⁷He is directly confirmed by the observation of its signature in the kinematics $n\alpha^6$ He plot. By gating on this signature we were able to identify two states in ¹¹Be at 16.2 and 18.3 MeV. Moreover, the study of the two states angular correlations and kinematics indicates a $3/2^{-}$ spin and parity assignment for both states.

To improve the analysis of the ⁷He channel one should use take into account

Table 2. Results of the χ^2 test performed over the simulations for both the angular correlations (θ) and the individual n, α and ⁶He energy plot (kinematics).

	1	$^{1}Be(16.2)$	$^{11}\text{Be}(18.3)$		
	$\chi^2(\theta^\dagger)$	$\chi^2({ m kinematics}^{\ddagger})$	$\chi^2(\theta^\dagger)$	$\chi^2({ m kinematics}^{\ddagger})$	
$1/2^{-}$	63	162	70	152	
$3/2^{-}$	21	51	18	48	
$5/2^-$	55	84	30	64	

 $\begin{tabular}{l} & \uparrow & \mathbf{N}_{free} = 19 \\ & \ddagger & \mathbf{N}_{free} = 49 \end{tabular} \end{tabular}$

interference effects between the two levels, as they are likely to have the same spin and parity. χ^2 minimization of the level centroid and reduced widths have to be performed before publication.

3 To-do list

- Subtract background from Figs. 2a and 3a by selecting a 60 ms sample of delayed events (at least one second after proton release).
- Study 90° coincidences.
- Include DSSSD D1 in the Monte-Carlo code to simulate 90° coincidences.
- Reproduce in the Monte-Carlo the experimental relative intensity between the 180° and 90° coincidences.
- Study θ^{ρ} coincidences.
- Estimate intensity of the ${}^{8}\text{Li}+\text{t}$ channel in 180° coincidences.
- Look for correlations between ⁸Li events in 180° coincidences and delayed 2α events.
- Estimate the delayed ⁸Li $\rightarrow \alpha + \alpha$ intensity.
- Calculate the theoretical proportion of ⁸Li that should stay in the carbon foil, thus producing delayed 2α events with momentum matching their emission from the foil.
- Calibrate the time after proton release (tshort) plot.
- Obtain the tshort plot for 180° coincidences.
- Look for ⁹Li events is delayed 90° coincidences.
- Theory: Otsuka, Brown & Morrissey, Gabriel Martinez Pinedo.

References

 M. Langevin, C. Détraz. D. Guillemaud and F. Naulin, M. Epherre. R. Klapisch, S. K. T. Mark, M. De Saint Simon, C. Thibault and F. Touchard, Nucl. Phys. A366 (1981) 449.

- [2] M. Langevin, C. Détraz, M. Epherre, D. Guillemaud-Mueller, B. Jonson and C. Thibault, Phys Lett. B146 (1984) 176
- [3] I. Mukha, M.J.G. Borge, D. Guillemaud-Mueller, P. Hornshøj, F. Humbert, B. Jonson, T.E. Leth, G. Martinez Pinedo, T. Nilsson, G. Nyman, K. Riisager, G. Schrieder, M.H. Smedberg, 0. Tengblad and K. Wilhelmsen Rolander, Phys. Lett. B367 (1996) 65.
- [4] M. Madurga, M.J.G. Borgea, J.C. Angelique, L. Bao, U. Bergmann, A. Butăb, J. Cederkäll, C.Aa. Diget, L.M. Fraile, H.O.U. Fynbo, H.B. Jeppesen, B. Jonson, F. Maréchal, F.M. Marqués, T. Nilsson, G. Nyman, F. Perrot, K. Riisager, O. Tengblad, E. Tengborn, M. Turrión, K. Wilhelmsen, Nucl. Phys A (submitted).
- [5] F. Ajzenberg-Selove, E.R. Flynn and Ole Hansen, Phys. Rev. C17 (1978) 1283.
- [6] M.J.G. Borge, L. Grigorenko, D. Guillemaud-Mueller, P. Hornshøj, F. Humbert, B. Jonson, T.E. Leth, G. Martinez Pinedo, I. Mukha, T. Nilsson, G. Nyman, K. Riisager, G. Schrieder, M.H. Smedberg, O. Tengblad and M.V. Zhukov, Nucl. Phys. A613 (1997) 199.
- [7] D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A745 (2004) 155.