

Towards a Frontcap design

M. Turrión¹, O. Tengblad¹, A. Perea¹, B. El Bakkari² ¹ IEM-CSIC, Madrid, Spain ² Univ. Abdelmalek Essaadi, Tetuan, Morocco

Crystal size: angular résolution

130° 45° 15° 8°

CSIC

Grupo de Física Nuclear Experimental

Ē

M

Material: detector requirements

✓ Detector requirements

- Absorption coefficient $\alpha \ Z^4$
- Energy resolution

100.0

10.0

1.0

0.1

0.0 ⊥ 0

2

Energy resolution (%)

SIC

Grûpo de Física Nuclear Experimental

• ~3% $\Delta E / E @ 1 MeV$

Material	Z _{eff}
LSO	66
LYSO	64.5
Csl	54
LaBr ₃	46.9

		Resolution (%)				
	E(MeV)	LaBr	Csl	LSO	LYSO	
		3				
	0.662	2.9	4.3	6.78	10.2	
	1	1.62	2.32	3.65	6.8	
	5	0.15	0.21	0.33	0.8	
2	10	0.05	0.07	0.12	0.3	
	20	0.02	0.03	0.04	0.1	

- Chemical, thermal and mechanical stability \Rightarrow hygroscopic problem

18

16

E(MeV)

20

+ LYSO

📥 LaBr3

CsI(TI)

- Practical manufacturing \Rightarrow price/cm³

Volume consideration

R/cm	x _a /c	x /cm	Vol /cm ³	%	Vol./cm ³	Vol/cm ³	%
14011	•••	A ^b , our		70	b, on	101,0111	70
30	10	5	21955	70.5	16087	38029	122.1
30	6	4	11657	37.4	10286	21943	70.5
30	8	2	16530	53.1	5413	21943	70.5
30	13	0	31139	100.0	0	31139	100
30	15	0	38029	122.1	0	38029	122.1

Grupo de Física Nuclear Experimental

CSIC

I E

M

Phoswich: p-energy resolution

CSIC

Grupo de Física Nuclear Experimental

Ep= 200MeV \rightarrow 20 mm LaBr $\rightarrow \Delta E$ = 31 \pm 1 MeV

✓ If not fully stopped

 \Rightarrow two Δ E detectors are required

- First detector should be thick in order to totally absorb protons up to rather high energy
- Second detector placed to solve the ambiguity on the signal

 Phoswich solution is feasible for the detection of photons as well as for protons

Optimization and tests underway

Simulations

 TOOLS: in parallel we are using Geant4 and MCNPX to double check that the simulations are consistent

 Crystal length study
Individual detector size in the array

Phoswich proposal

Our proposal for small angles is to use a phoswich detector

- Protons: particle telescope Δ
- Gammas: energy and efficier cost

GSI-15th Oct 07