Maria J. G. Borge Evolution and the michael sends calo **ISOLDE-PH, CERN** (Isotope Separator On-Line)

Physics program @ REX

REX-ISOLDE started in 2001 72 different beams already used at REX- ISOLDE of 700 available! Coulomb excitation with Miniball:

collectivity versus individual nucleon behaviour

Transfer Reactions @ REX

HIE-ISOLDE Opportunities:

Reaction	Physics	Optimum energy
(d,p), (³ He,α), (³ He,d), (d,n), transfer	Single-particle configurations, r- and rp-process for nucleosynthesis	10 MeV/u
(³ He,p), (d,α), (p,t), (t,p)	pairing	5-10 MeV/u
Few-nucleon transfer	Structure of neutron-rich and proton- rich nuclei	8 MeV/u
Unsafe Coulomb excitation	High-lying collective states	6-8 MeV/u
Compound nucleus reactions	Exotic structure at drip line	5 MeV/u
Coulomb excitation, g-factor measurements	Nuclear collectivity and single- particle aspects	3-5 MeV/u
(p,p'γ), (p,α),	nucleosynthesis	2-5 MeV/u

Near Future: HIE-ISOLDE project

Energy Upgrade: The HIE-ISOLDE project construction of the SC LINAC to upgrade the energy of the postaccelerated radioactive ion beams to 4.3 MeV/u in 2015 and 10 MeV/u by 2017

- Approved Dec 2009
- Offically started Jan 2010
- Yacine Kadi project Leader
- V. Mertens Project Monitoring
- F. Formenti Technical Coord.
- Budget 43 M\$

Intensity Upgrade: The design study for the intensity upgrade, also part of HIE-ISOLDE, started in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online.

SC-LINAC Installed in 3-phases ✓ CRYOGENIC JUMPER POSITIONS

✓ HIE STAGE 2B WITH CHOPPER LINE

High-β Cryomodule sub-elements

Cavity prototypes designed & built @ CERN

The high-β Cavities are based on 101.28 MHz niobium-sputtered copper (Nb/Cu) Quarter Wave Resonators.

Highly demanding: acceleration gradient 6 MV/m with power consumption of 10 W

³/₄ Cavities performing beyond spec

8

Present Status

One cryo module installed to ensure physics in October 2015

is compatible with the layout and the initial requirements for physics (4.3 MeV/u)

Beam Parameters

- A/q = 4.5 and energy 5.5 MeV/u are the nominal parameters of the facility.
- Higher energy and lower A/q ->

Decrease in efficiency

Increase in breeding time

 $E_{final} = 2.9 + 14/(A/q)$ [MeV/u]

Assuming 6 MV/m

A/q = 4.5 E =1. 2 – 5.5 MeV/u A/q = 2.4 E= 1.2 - 8.6 MeV/u

Proposed three beamlines

Design Study for Mid-2014

➢Intensity Upgrade

- ➤Thermal Studies
- ➤Target Material Studies
- Fluka Simulations
- ➤Cooling & Ventilation renew
- ➤Frontend
- ≻High Voltage
- ➢Beam Dumps

➢Beam Quality

- ≻Vacuum
- ➢RFQ Cooler
- ➢ REXEBIS Upgrade
- ➢Off-line Separator
- ≻HRS

LayoutControls

Linac 4 and PSB upgrade (1x10¹⁴ protons per bunch (3.3x10¹³)

2GeV beam energy (1.4GeV)

Protons/pulse	Intensity μA	Energy GeV	Cycle s	Power kW*
3.3 x 10 ¹³	2.2	1.4	1.2	3.1
1 x 10 ¹⁴	6.7	1.4	1.2	9.3
1 x 10 ¹⁴	6.7	2	1.2	13.3

HRS and GPS dumps

- Max temperatures and stresses are below the material limits for a 2.0 GeV beam

2 SS plus palse copper Type: Temperatu Unit: "C Time: 5:4e-007 8/2/2113 11842 00 134.57 97.548 93.537 93.687 93.687 93.687 93.687 93.687 93.536 93.536 93.536 93.536

EBIS parameters	REXEBIS (Now)	HEC ² for HIE-ISOLDE	HEC ² II for TSR@ISOLDE	Demonstrated (Nov 2013)
Electron energy [kV]	5	60	150	30
Electron current [A]	0.2	3-4	4-5	1.54
Electron current density [A/cm ²]	100	1-2x10 ⁴	1-2x10 ⁴	NA

- HEC² gun built at CERN, shipped to BNL and installed on Test EBIS
- HEC² gun first operated at BNL in Nov 2013 on the real EBIS
- Energy up to 30 keV and current up to 1.54 A were achieved in ~ 10 ms pulses
- Diagnostic tools to measure the current density were set up for the next visit
- The test stand is upgraded to enable higher current
- Extended set of diagnostic tools is in production at CERN

ISCOOL

Measured misalignment of the injection (top) and extraction electrodes was 0.75mm Results of the internal realignment for the injection and extraction electrodes to a precision of 0.1mm

External alignment was done by aligning both sides of ISCOOL to the beamline quadrupole triplets, using a RILIS laser and the target

Construction of new RFQCB:

 ✓ All parts needed for setup in the test stand have been received, or are in the workshop.

Installation will begin in the next months.

Advantages of HIE-ISOLDE

 \Rightarrow Access to the sign of deformation

σ (mb)

High energy needed to learn about the "l" transfer

Physics @ HIE-ISOLDE

- May 2010: 34 Lol submitted
- I Nov 2012: INTC endorsed the increase of 2 GeV-proton energy for ISOLDE
- 27 experiments already approved 82
- 600 shifts already allocated for day 1 physics 50

- Isospin symmetry
- Nuclear astrophysics
- Collectivity versus Single Particle
- Magic numbers far from stability
- Shape Coexistence
- Quadropole and octupole degrees of freedom

126

82

50

Instrumentation

- Miniball + T-ReX (upgrade planned) : COULEX + Transfer
- Multipurpose reaction chamber
- CORSET chamber for Fusion-fission reactions 1
- SPEDE: added to Miniball+T-REX
- Helios type device: transfer @ TSR
- MAYA/ACTAR: resonant scattering + transfer. 1
- For 2016: TSR storage ring,

22

2

Adressing the ⁷Li cosmological Problem (IS554)

A factor of 4 in abundance of primordial ⁷Li abundance while good agreement od D, ^{3,4}He.

Theory ${}^{7}\text{Li/H} = 5.12 {}_{-0.62} {}^{+0.71} \times 10^{-10}$ Observation ${}^{7}\text{Li/H} = 1.23 {}_{-0.16} {}^{+0.34} \times 10^{-10}$

Explore the alternative of resonance enhancement of nuclear reactions \rightarrow Via the ⁷Be(d,p)2 α

The destruction of ⁷Be can be high due to the narrow resonance in ⁹B at 16. 7MeV $(5/2^+)$

- This resonance can be very strong
- At the limit of quantum mechanically allowed value for the deuteron separation width
- Er = 170 -220 keV ;
- > Deuteron Separation width $\Gamma_d = 20 40 \text{ keV}$
- Achieved if the interaction radius for deuterium > 9 fm

Experiment ⁷Be(d,p) and (d,d) at 35 MeV at T-REX

Study of n=8 gap beyond stability (IS564)

- Study of the unbound proton-rich nucleus ²¹Al with resonance elastic and inelastic scattering using an active target
- The N=8 shell gap at the proton-drip line known up to ²⁰Mg
- The next isotope in the chain is ²¹Al -> no experimental data

<u>ADVANTAGES</u> compared to conventional thick target method:

- 1) Background from C can be discriminated.
- 2) Inelastic and elastic can²be separated.

Shell Evolution in Ni-isotopes (IS555)

Search for the new magic numbers above ²⁰⁸Pb?(IS550)

Z = 114, 120 or 126 N = 184

- Shell closures indicated by an increase of fission barriers and half-lives
- Influence expected in quasi-nuclei

$$\sigma_{ER} = \sigma_{capture} \times P_{CN} \times P_{survival}$$

$$TOF \qquad Si stop detector$$

$$Beam \rightarrow i$$

$$rotatable$$

$$quasi-fission \qquad 3 \qquad i o \ \Delta\Omega \approx 50 \ msr$$

- Nuclei with N ≈ 184 are still far
- Nuclei with Z > 118 are still unknown
 - Study of quasi-fission and fusionfission with ^{94,95}Rb projectiles with Corset

⁹⁵Rb + ²⁰⁹Bi →
$$Z_1 + Z_2 = 120$$
,
N₁ + N₂ = 184

Asymmetric component → transfer, quasi-fission \checkmark **Symmetric component** → fusion-fission

Coulomb excitation of ¹⁸²Hg

Shape transition & shape Coexistence in neutron deficient ¹⁴⁰Sm

New candidates for EDM Measurements (IS552)

- The observation of a non-zero EDM indicates T-violation beyond the Standard Model.
- Octupole-deformed nuclei will have enhanced nuclear "Schiff" moments due to the presence of nearly degenerate parity doublets (seen in odd mass nuclei) and large collective octupole deformation.
- Presently |d(¹⁹⁹Hg)| < 3.1×10⁻²⁹ e.cm, PRL 102 (2009) 101601
- Octupole deformed nuclei will have 100-1000 higher sensitivity compared with stable nuclei
- Characterization of ²²¹Ra
- increased of a factor of 5 from 3 to 5,5 MeV/u
- Measurements of γ and econversion to determine the ΔE of parity doublet.

Conclusions

- Plenty of challenging physics waiting for the starting of HIE-ISOLDE!
- Many new groups and devices have been attracted by the increase of energy of the post-accelerated beams.
- Phase 1: Start of the 4.3 MeV/u, physics program in autumn 2015
- HIE-ISOLDE will be the only next-generation radioactive beam facility (as identified by the NuPECC LRP) available in Europe in 2015, and the most advanced ISOL facility world-wide in this period.

Thanks for your attention !

1	9Li	(p,2p), (d,pn)	Multitransfer reaction	
	20Mg	MAYA/elastic	21Al last n=8	
_	66Ni	Miniball	G-strength enhancement	
	68Ni	Miniball+T-REx	Transfer reactions	
	70Ni	T-REX, (d,p)	Roll of d5/2 and g9/2	
	70Se	Miniball	Multistep Coulomb around N=50	
	74-80Zn	Miniball	Proving Shell Modela round N=50	
:	80Zn	T-REX, (d,p)	Single part orbits in N=50	
1	94Rb	T-REX, 208Pb-target	Multinucleon transfer	
,	^A Rb	CORSET, Bi-target	Quasi-fission, Fusion-fission for superheavies (7=120)	
	106,108,110Sn	Miniball	B(E2) deviation from predictions	
	132Sn	Miniball	2p2h cross Shell configuration	
	132Sn	Miniball	Moments of single part.	
	134,136Sn	Tilted-foil	B(E2)	
	142Xe	Miniball	B(E2), B(E3)	
	142,144Ba	Miniball	B(E3)	
	140Nd, 142Sm	Miniball	2+, stabilization of collective balance in N=80	
	140Sm, 142Gd	Miniball	Shape coexistence	
	182,184Hg	Miniball	Shape coexistence	
	186,188Pb	Miniball	Coulomb excitation	
	206Hg	Miniball	Multistep Coulomb 2+3-27	
	222 224 2260	Minihall	Osturala Callestivity	

HIE-ISOLDE Beam parameters

Parameters HIE-ISOLDE Stage1	Value	Units
Mass to charge ratio A/q	2.5 to 4.5	
Output kinetic energy for A/q 4.5	1.2 – 5.5	MeV/u
Output kinetic energy for A/q 2.5	1.2 - 8.6	MeV/u
RF base frequency	101.28	MHz
RF period	9.87	ns
Max. rep. rate (NC linac)	50	Hz
Max RF pulse length (NC linac)	2	ms
EBIS pulse length	50 - 500	us
Transverse normalised emittance (90%)	0.07 (rms), 0.3 (90%)	mm.mrad
Longitudinal emittance (86%)	0.35 (rms), 1.5 (86%)	ns.keV/u
Energy spread	< 0.6 % (FWHM)	

(P) 501	De
---------	----

New Baseline Schedule

EDMS: Revision date:

			197	Compressor Building (198)	Cold box Building (199)	Infrastructure Building (170)	SM 18 (C.M. assembly + tests)		SC Linac	HEBT-XT00 & XT001	HEBT-XT02		
+/	oda		ondary	at Critic	Mixed	el roof es C	rod	Ĺ				10 11 12	Mar.
2014	Apr. May Jun. Jul. Aug. Sep. Oct.			Compressor installation Compressor installation HVA NVA NVA NVA NVA NVA NVA NVA NVA NVA N	Codd box intraliation Codd Box detav East ib Jumper boxes install Cryo distrib systems East ib Jumper boxes install action R F quipment install action	Turned BHERT Infrastructure Cabling compages	CMC and ty ancillaries CMC and wasels CMC and ty ancillaries CML and wasels CM2 cavety ancillaries CML and wasels CM2 cavety ancillaries CML and wasels F Systems tests Solen. 2 F Systems tests Cavet CAV7 Cave 5 CM1 assembly Cavet CM2 cavet Saff training		Intertank prod	Protectorreter prod Protector Prover converter prod Productess Interlock prod Interlock prod Interlock prod Productess Interlock prod	cinctalination b sin stalination minstallation minstallation Survey	44 15 15 16 17 18 19 19 10 11 12 13 14 15 15 16 17 18 19 19 10 11 11 12 13 14 15 16 17 18 18 19	Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
2	201 Mar. Apr. May Jun.				Cyo performance		to cav 10		CM1 Comm CM1 Inst	Beam tastr t	EPC tests Interfock tests Magnets tests M Vacuum tests Vacuum tests VDC2 tests	2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Jan. Feb. Mar. Apr. May Jun. Jul.
m		ne clo	ose	d – start	check-out		Machine check-out 000	1				11 12 13 14	Aug.
sta	sep.	eam () () () () () () () () () ()	COI	nmission	ing		Beam commissioning					15 16 27 28 29 40 41	Sep.
st	art r		S O	peration								42 43 44 45	Oct.
	Nov. Dec.	46 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										46 47 48 48 50 51	Nov. Dec.

The resources

Changes after the Cost & Schedule Review in 2012

- > 2.56 MCHF for the Infrastructure Systems were added to the MTP.
- > 0.7 MCHF for the Machine as a CERN loan to the HIE-ISOLDE Collaboration.
- A staff position was opened for three years for one Mechanical Engineer for TE/ MSC-CMI.
- Preparation of Cost & Schedule Review in October 2013
- Manpower: Resources added to help bolster areas under stress

Volker Mertens (DDH of TE) for Project Monitoring Fabio Formenti (TE) for Technical Coordination

Technical & Engineering teams augmented

A shortfall for the Phase 1 was identified in the machine part. Of 4.5 MCHF

✓ The shortfall of 4.5 MCHF has been included in the MTP to be approved by Council in June 2014.

The reinforced project team judges

- ✓ that the resources for the design and procurement are adequate,
 - a considerable part of the assembly and installation are adequate, while for other parts of the equipment assembly and tests as well as for the commissioning, need still to be confirmed.

Beam Lines & Cable Traces

Diagnostic box

30195

Accepted HIE-ISOLDE experiments

title		setun	shifts	isotopes	energy
		Sciup	approved	approved	MeV/u
Study of the effect of shell stabilization of the collective		MINIBALL + CD-	42	140Nd,	3.62; 4.5
isovector valence-shell excitations along the N=80 isotonic chain	IS546	only or MINIBALL		142Sm	
		+ T-REX			
Coulomb excitation of the two proton-hole nucleus 206Hg	19547	MINIBALL + CD-	15	206Hg	4.1 ?
	13347	only			
Evolution of quadrupole and octupole collectivity north-east of	195/18	MINIBALL + T-	30	142Xe	4.50
132Sn: the even Te and Xe isotopes	13340	REX			
Coulomb Excitation of Neutron-rich 134;136Sn isotopes	19540	MINIBALL + T-	30	134;136Sn	4.40
	13349	REX			
Study of the Dinuclear		CORSET: 2-arm		95Rb	4.5-5.5
System ARb + 209Bi (Z1 + Z2 = 120)	IS550	TOF			
		spectrometer	12		
Coulomb excitation of doubly magic 132Sn with MINIBALL	19551	MINIBALL + T-		132Sn	5.50
at HIE-ISOLDE	13331	REX	18		
Measurements of octupole collectivity in Rn and Ra nuclei using		MINIBALL + CD-		222Rn,	4-5
Coulomb excitation	IS552	only; MINIBALL +		222,226,228	
		SPEDE	17	Ra	
Determination of the B(E3,0+->3-) strength in the	19553	MINIBALL + T-		142,144Ba	3.32, 4.1
octupole correlated nuclei 142,144Ba using Coulomb excitation	13333	REX	30		
Search for higher excited states of 8Be* to study the	19554	MINIBALL + T-		7Be	?
cosmological 7Li problem	13334	REX	15		
Study of shell evolution in the Ni isotopes via one-neutron		MINIBALL + T-		71Ni	5.50
transfer reaction in 70Ni	13555	REX	36		
Spectroscopy of low-lying single-particle states in 81Zn		MINIBALL + T-		80Zn	5.50
populated in the 80Zn(d,p) reaction	13550	REX	36		
Coulomb excitation 74Zn-80Zn (N=50): probing the validity of	19557	MINIBALL + CD-		74-80Zn	4.55
shell-model descriptions around 78Ni	13557	only	30		
Shape Transition and Coexistence in Neutron-Deficient Rare Earth		MINIBALL + CD-		140Sm	4.70
Isotopes	13000	only	12		
Statistical properties of warm nuclei: Investigating the low-energy	19550	MINIBALL + CD-		66Ni	5.50
enhancement in the gamma strength function of neutron-rich nuclei	13008	only + LaBr3	21		

title	EXP#	setup	shifts approved	isotopes approved	energy MeV/u
Nuclear-moment studies in the odd-mass In isotopes up to N=82 using the Tilted Foils technique	IS560	tilted-foils + beta- NMR	13	129In	0.30
Transfer reactions at the neutron dripline with triton target	IS561	Si and SAND arrays		9Li	7 for A/q=3, 5.5 for
Transfer Reactions and Multiple Coulomb Excitation in the 100Sn Region	IS562	MINIBALL + CD- only	30 30	110,108,106 Sn	A/q=4.5 5.50
Coulomb excitation of 182-184Hg: Shape coexistence in the neutron-deficient lead region	IS563	MINIBALL + CD- only	12	182,183,184 Hg	4.00
Study of the unbound proton-rich nucleus 21Al with resonance elastic and inelastic scattering using an active target	IS563	MAYA detector	43	20Mg	5.50
Probing intruder configurations in 186,188Pb using Coulomb excitation	IS566	MINIBALL + SPEDE	10	188Pb	<4.2
Solving the shape conundrum in 70Se	IS569	MINIBALL+CD	15	70Se	5 or 5.5
Study of shell evolution around the doubly magic 208Pb via a multinucleon transfer reaction with an unstable beam	IS572	MINIBALL	27	94Rb	5.50
Measurement of octupole collectivity in Rn and Ra nuclei using Coulomb excitation	IS552	Miniball+Spede+ CD	18	22,226,2214 Rn	4-5
Characterising excited states in and around the semi-magic nucleus\n 68 Ni using Coulomb excitation and one-neutron transfer	IS587	Miniball+T-REX	9	70Ni	5.00
(d,p)-transfer induced fission of heavy radioactive beams	IS581	ACTAR + (Ge detectors)	28	193TI, 199Bi, 201At, 209Fr	5.00
18N: a challenge to the shell model and a part of the flow path to r- process element production in Type II supernovae	IS591	Miniball +T-REX	21	17N	5.00

