

Unbound Beryllium: ¹³Be

Guillermo Ribeiro Jiménez IEM - CSIC (Madrid)

Supervisor: Olof Tengblad 28th April 2014

The s393 Experiment

Study light neutro-rich nuclei (Be-Ne), using kinematically complete measurements, and inverse kinematics.

• Objective:

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

 Studying unbound nuclei ¹³Be using quasi-free scattering reactions

⁴⁰Ar¹¹⁺ Primary beam at 490 MeV/u with an intensity of
6·10¹⁰ ions/spill. The production target was Beryllium with
4011 mg/cm²

Knockout reaction ¹⁴B(p,2p)¹³Be GSI Target Target **Direct Reaction:** These reactions occur Proton quickly and proceed θ directly from initial to final states without $\theta_{\rm b}$ producing an intermediate ^{14}B ^{13}Be Proton compound state. If both outgoing particles have the same masses, in the

same masses, in the lab system.: $\theta_A + \theta_B = \frac{\pi}{2}$

(p,2p), (p,np)

FRS Settings

Incoming ion id-plot.

Setting	Run	Data(incoming ¹⁴ B)	Time	¹³ Be	Incoming/s	¹³ Be/s	production
4	413	1.21·10 ⁵	7h11m	46	4.68	1.78·10 ^{−3}	3.80·10 ⁻⁴
4	414	1.05·10 ⁵	6h0m	41	4.86	1.9·10 ^{−3}	3.90·10 ⁻⁴
4	427	1.73·10 ⁶	10h26m	542	46.06	1.44·10 ⁻²	3.13·10 ⁻⁴
5	385	1.47·10 ⁵	2h38m	84	15.51	8.86·10 ⁻³	$5.71 \cdot 10^{-4}$
5	386	1.13·10 ⁶	10h59m	294	30.67	7.98·10 ⁻³	2.60·10 ⁻⁴
5	388	8.31·10 ⁵	5h15m	235	43.97	1.24·10 ⁻²	2.83·10 ⁻⁴
6	473	7.06·10 ⁴	7h9m	24	2.74	9.32·10 ⁻⁴	$3.40 \cdot 10^{-4}$
6	480	1.52·10 ⁵	17h12m	54	2.45	8.72·10 ⁻⁴	$3.55 \cdot 10^{-4}$
6	515	1.21·10 ⁵	12h39m	47	2.66	$1.03 \cdot 10^{-3}$	3.88·10 ⁻⁴

	<u>setting 4</u>	setting 5	setting 6	
<u>A/Z</u>	<u>2.75</u>	<u>2.88</u>	<u>3.0</u>	
Example nuclei of interest	^{21,22} O ¹¹ Be	²³ O ¹¹ Be ¹⁷ C, ¹⁴ B	¹⁸ C ²⁴ O ¹² Be ^{26,27} F	
<u>Target</u>				
<u>Pb</u>	-	=	<u>10</u>	
<u>C</u>	<u>2</u>	<u>2</u>	<u>3</u>	
<u>Empty</u>	<u>2</u>	<u>2</u>	<u>4</u>	
<u>CH2</u>	<u>6</u>	<u>6</u>	<u>10</u>	
<u>Setting</u> <u>FRS</u>	1	1	1	
	<u>11</u>	<u>11</u>	28	

Setting $4 \approx 38$ h Setting $5 \approx 29$ h Setting $6 \approx 113$ h

Experiment:Cave C

Inverse & complete Kinematics

Three targetsProtons(CH2)Heavy(Pb)Light (C)

Analysis: Selecting the fragment mass

- Energy loss in the TFW & SST after the target: Identify the element after the reaction.
- Identify the isotope from the ALADIN position deviation and beta of the fragment.

From ¹⁴B

$$E_{rel} = \sqrt{m_n^2 + M_{12Be}^2 + m_n \cdot M_{12Be} \gamma_n \gamma_{12Be} \left[1 - \beta_n \cdot \beta_{12Be} \cdot Cos(\theta_{fra-n}) \right] - m_n - M_{12Be}}$$

Outgoing-incoming angle

Empty run

(a) X coordinate angle difference, empty run

(b) Y coordinate angle difference, empty run

(a) X coordinate angle difference. Run 427, unreacted beam with CH_2

, (b) Y coordinate angle difference.Run 427,

Momentum distribution

Fragment(¹²Be)

Neutron

Total momentum

Momentum profile: X coordinate

$$P(E) = \sqrt{Var(p)} = \sqrt{\langle p_f + p_n \rangle^2} > -\langle (p_f + p_n) \rangle^2$$

Comparing with previous results

Looking for gammas of the ¹²Be: XB

The two main gamma sources are:

- 2⁺ state at 2.11 MeV
- 1^- state at 2.71 MeV

None of them seems like the possible peak showed.

Gamma checking: Energy after gating

Relative energy, gated in 2.15-2.35 MeV gammas

Relative En

0

2

54

Relative Energy(MeV)

Interpretation

- No gammas → fed the 0⁺ of the ¹²Be
- M. Profile analysis-> Only fed p-d states-> 5MeV or 2.9 MeV state

Next steps

- LAND efficency
- Check the p2p
- Improve interpretation -> Momentum profile analysis theoretical fit
- Fit the possible states to Breitt-Wigner curves on the relative energy plot.

Suggestions?

Gracias! Tack!

