

¹¹Be halo nucleus reaction on heavy targets at energies around the Coulomb barrier

11 Be

Outline

Motivation:

- Halo nuclei.
- What is new.

Experimental setup:

- TRIUMF and TIGRESS.
- Charged particles and gamma radiation detection.
- Fragment identification. 2D plots.

CDCC explanation temptative

Experimental results:

- Break up probability.
- Gamma-particle coincidence.
- Inelastic scattering probability.

Conclusions and outlook

11 Be

Nuclear Experimental

Halo nuclei

501.6 keV	
320 keV	1/2-
	1/2+

11 Be

ı

⁶He & ¹¹Li

- -Two-neutron haloes, borromean systems.
 - -Theoretical challenge. 4 body calculations.

¹¹Be

- One neutron halo.
- -Break up threshold Sn = 501.6 keV.

Halo nuclei

<u>501.6 keV</u>	
320 keV	1/2-
	1/2+
	1/2+

11 Be

⁶He & ¹¹Li

- -Two-neutron haloes, borromean systems.
 - -Theoretical challenge. 4 body calculations.

¹¹Be

- One neutron halo.
- -Break up threshold Sn = 501.6 keV.
- Bound excited state at 320 keV. B(E1)=0.112(4) e²fm² (E. Kwan, not published yet)
- Less mass difference after break up.
- Experimental challenge. Fragment identification

+ angular resolution + gamma detection in coincidence.

TRIUMF & TIGRESS

TRIUMF

- Cyclotron.
- Continuous beam accelerator.
- ISOL method.
 - Exotic nuclei at 2.9 MeV/u

TIGRESS

- HPGe Detector array.
- 16 clovers, 8 at 90° y 4 at 135° (+ 4 not used).
- 4 crystals per clover.
- 8 segments (4 + 4) per crystal.
- Compton supression with BGOs.

Charged particles and gamma radiation detection

Charged particles:

- 3 telescopes DSSSD 16x16 (40µm) + PAD.
- 1 telescope SSSD 16 (20 μm) + DSSSD 16x16 (300 μm).
- Covering theta range 13° 150°

TIGRESS:

- Low efficiency configuration.
- More Compton supression.
 - Espectra at 320 keV cleaner.

Digital electronics:

- Advantage: remote manipulation of parameters:
 - gains, thresholds...
- -- Disadvantage: Less accessibility. We had CrossTalk problems that couldn't afford stop to fix.

The experiment

<u>2012 on ²⁰⁸Pb (1.45mg/cm2):</u>

- 11Be @ 3.6 MeV/u.
- 10Be @ 3.6 MeV/u.
- 11Be @ 3.1 MeV/u.
- 11Be @ 2.9 MeV/u.

<u>2013 on ¹⁹⁷Au (1.9mg/cm2):</u>

- 12C @ 5.0 MeV/u.
- 11Be @ 3.6 MeV/u.
- 11Be @ 2.9 MeV/u.

Charged particles and gamma radiation detection

Grupo de Física Nuclear Experimental

Analysis conditions

-Conditions for events:

P hits >0 && N hits && Pad hits > 0 if (threshold < Channel && channel < pulsed channel){ Calibrate the hit with higher energy

if |Ep-En| < 200 keV

// For identifying the physical process we are more interested in bunching the events in bananas, better than knowing their actual energy deposition.

 $\Delta E = \Delta E \cos \theta$ Epad = E pad + (1- cos θ) ΔE

Conditions for gammas coincidences:

EnerSum > threshold && EnSupressor < threshold If EnerSum >282 keV && 310 keV < Edoppler < 337 keV

Charged particles and gamma radiation detection

<u>Charged particles</u> - ΔE vs Eback.

a) Quasielastic and break-up identification $\theta_{lab} = 28^{\circ}$

Charged particles and gamma radiation detection

Charged particles + TIGRESS

- Gamma rays in coincidence with particles.

Vicente Pesudo, IEM-CSIC

14

¹¹Be

Rupo de Física Nuclear Experimental

Е

CSIC

Vicente Pesudo, IEM-CSIC

Break up and inelastic scattering probabilities

Vicente Pesudo, IEM-CSIC

Grupo de Física Nuclear Experimental

Nuclear Experimental

18

Vicente Pesudo, IEM-CSIC

Grupo de Física

Nuclear Experimental

Break up ¹¹Be on ¹⁹⁷Au @ 3.6 MeV/u

Vicente Pesudo, IEM-CSIC

Е

Grupo de Física

Nuclear Experimental

Conclusions

-Calculations have convergence problems.

-Independent particle model predicts well the B(E1) to the continuum but overestimates B(E1) to the bound excited state (0.26e²fm², factor of 2 over exp.).

Expected overestimation of P_{inel}.

-May be caused by a not-so-inert core. Necessity including core excitations in the calculations.

$$|11Be^{*}\rangle_{1/2} = a |10Be(0+) \otimes p1/2\rangle_{1/2} + b |10Be(2+) \otimes ... + ... \\ |11Be^{*}\rangle_{1/2} = a |10Be(0+) \otimes 2s1/2\rangle_{1/2} + b |10Be(2+) \otimes 1d 5/2\rangle_{1/2} + b |10Be(2+) \otimes 1d 5/2 \otimes 1$$

Conclusions and outlook

-An experiment of 11Be on heavy targets at energies around the Coulomb barrier observing BU and inelastic scattering has been undertaken for first time:
-with high granularity.
-at angles as low as 14°.

-Enough resolution for separation of break up and elastic events below the barrier: **Halo.**

-Even with a mass difference between fragments of 1/11.

- Break up probability matches with CDCC calculations in the range they are reliable.

- Work on progress:

- Exp: Fine positioning, add tel 4.
- Th: Focusing the reaction from a n-transfer approach

tak for din opmærksomhed tack för din uppmärksamhet

Gracias por vuestra atención

Probabilidad reducida de ruptura: Caso de ¹¹Li $d\varepsilon \frac{dB(E1;\varepsilon)}{d}$

 $\varepsilon e^{-t\varepsilon}$

Nuclear Experimental

(t)	_	1
(<i>Ze</i>) ²	_	
$4(t - \frac{\pi a_0}{\hbar v})$		v

J.P. Fernandez-Garcia et el., Phys.Rev.Lett. 110, 142701 (2013)kamura et al., PRL96 252502 (2006)

- Para las reacciones dominadas por Coulomb, la Pr. red de ruptura es la transformada de Laplace de la B(E1).

- Haciendo el cambio de variable se concentra la dependencia en energía, ángulo y blanco en un solo parámetro:

El tiempo de colisión. Scaling!

$$t = \left(\pi + \frac{2}{\sin(\theta/2)}\right) \frac{a_0}{\hbar v}$$

- En la región donde la aproximación coulombiana es buena (ángulos pequeños o tiempos de colisión grandes) la derivada logaritmica de la Pr. Red. es la energía efectiva de ruptura 0.35 MeV for ¹¹Li.

Vicente Pesudova EM-CSIC/icente Pesudo

Prob. Reducida de ruptura

