Quick intro	Experimental setup and problems	Proton scattering experiment	11 B(p,3 α)	EXTRA: acc. calibration

Work at 5 MV accelerator in Aarhus

Kasper Lind Laursen

April 2014

Proton scattering experiment 00000 ¹¹Β(p,3α) 00 EXTRA: acc. calibration o

5 MV Van de Graaff accelerator

Possibilities

- ¹H, ³He, ⁴He
- $I_{proton} = 0.01 \, nA 100 \, nA$
- *E*_{proton} : 700 keV 3500 keV
- Stable conditions.

Quick intro	Experimental setup and problems	Proton scattering experiment	$^{11}B(p,3lpha)$	EXTRA: acc. calibration
000				

Beam line

Quick intro	Experimental setup and problems	Proton scattering experiment	$^{11}{}B(p, 3\alpha)$	EXTRA: acc. calibration
000				

Beam line

Quick intro 00●	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0	
Physic	s motivation				

Reactions through which we can study problems of astrophysical interest:

- ¹²C-studies: ¹¹B(p, γ)3 α , ¹⁰B(³He,p)¹²C
- ${}^{16}\text{O-studies:} {}^{15}\text{N}(p,\gamma){}^{16}\text{O}, {}^{14}\text{N}({}^{3}\text{He},p){}^{16}\text{O}$

Quick intro	Experimental setup and problems	Proton scattering experiment	$^{11}B(p,3\alpha)$	EXTRA: acc. calibration
000				

Physics motivation

Reactions through which we can study problems of astrophysical interest:

- ¹²C-studies: ¹¹B(p,γ)3α, ¹⁰B(³He,p)¹²C
 ¹⁶O-studies: ¹⁵N(p,γ)¹⁶O, ¹⁴N(³He,p)¹⁶O

- Search for 2^+_2 . Important for 3α reaction rate at temperatures above 1e9 K. W. R. Zimmerman et al., Phys. Rev. Lett. 110, 152502 (2013).
- Search for 4⁺₂. Next step in the Hoyle state rotational band. Hints of this state: M. Freer et al... Phys. Rev. C 83, 034314 (2011)

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0
Dotoct	or cotup			

Detector setup

- DSSSDs: $(2 \times 16) + (2 \times 16) + (32 + 24) + (32 + 24) = 176$ strips
- Mesytec preamps and amps (STM16+ and MSCF-16)
- VME modules: CAEN ADC (785) and TDC (1190)

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0

Detector setup

- DSSSDs: $(2 \times 16) + (2 \times 16) + (32 + 24) + (32 + 24) = 176$ strips
- Mesytec preamps and amps (STM16+ and MSCF-16)
- VME modules: CAEN ADC (785) and TDC (1190)
- Solid angle coverage $\approx 40\%$

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0

Detector setup

Kasper Lind Laursen

< □ > < □ > < □</p>

MAGISOL MEETING APRIL 2014

Faraday cup placed after 0.5 m nipple.

• Necessary due to backscattering from Faraday cup (stainless steel)

Faraday cup placed after 0.5 m nipple.

- Necessary due to backscattering from Faraday cup (stainless steel)
- Figure (with hitpattern) shows 'strange" effect

Faraday cup placed after 0.5 m nipple.

- Necessary due to backscattering from Faraday cup (stainless steel)
- Figure (with hitpattern) shows "strange" effect

Faraday cup placed after 0.5 m nipple.

- Necessary due to backscattering from Faraday cup (stainless steel)
- Figure (with hitpattern) shows "strange" effect

Quick intro	Experimental setup and problems	Proton scattering experiment	11 B(p,3 α)	EXTRA: acc. calibration
	00000			

More Faraday cup problems...

Ratio of currents

000 00000 00000 00 0	Quick intro	Experimental setup and problems	Proton scattering experiment	$^{11}B(p,3\alpha)$	EXTRA: acc. calibration
		00000			

Estimate fraction of protons scattered out of FC:

- Distance for target to FC $\sim75\,cm$
- Diameter of FC $\sim 1\,\text{cm}$
- $E_{\text{proton}} = 1 \text{ MeV on } ^{11}\text{B}$

Quick calculation for probability of "missing" the FC (using CM Rutherford crosssection)

$$P = \left(\frac{Z_1 Z_2 \alpha \hbar c}{4 E}\right)^2 \times \left(2 \pi \int_{\theta_{\rm FC}}^{\pi} \frac{\sin(\theta)}{\sin^4(\theta/2)} d\theta\right) \times \left(\frac{d_{\rm target thick} * N_A}{M_{\rm 11B} \cos(\theta_{\rm target})}\right) \approx 0.10$$

- Faraday cup does not collect all beam particles
- Energy dependence: Multiple scattering, CM

Ratio of currents

Faraday cup problem: solution

Construction of new FC

• 4 times larger collection area

Calibration of the generating voltage meter (GV reading):

 $\bullet\,$ Early analysis suggested that the GV reading is \sim 50 keV lower than the true acceleration voltage at 2 MeV

Calibration of the generating voltage meter (GV reading):

 $\bullet\,$ Early analysis suggested that the GV reading is $\sim 50\,keV$ lower than the true acceleration voltage at 2 MeV

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α)	EXTRA: acc. calibration
000		●0000	00	0

Intro

Experiment was carried out in March and aimed at determination of elastic scattering cross-section.

Motivation:

- Test of our setup
- Background for ${}^{11}B(p,3\alpha)$

Experiment:

- ${}^{10}B(p,p)$, ${}^{11}B(p,p)$ (${}^{12}C$ backing)
- 3 detector (no downstream S3)
 - Angular coverage: $53^\circ-127^\circ$ and $142^\circ-166^\circ$
- Energies: 0.3 3.4 MeV in step of 100 keV
- $I_{\rm proton} \sim 1\,{\rm nA}$
- 5 min on each energy

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration

Analysis

Cross-section calculation:

$$\frac{d\sigma}{d\Omega}^{^{11}\text{B}}(E,\theta) = \frac{N_{^{11}\text{B}}}{N_{^{\text{proton}}} \cdot \frac{N_{^{\text{target}}}}{A_{^{\text{target}}}} \cdot d\Omega \cdot Live_{\%} \cdot Abundance_{^{11}\text{B}}}$$
(1)

$$N_{^{11}\text{B}}$$
:
 $E_{\text{proton}} = 3.39 \text{ MeV}$ at angles $114^{\circ} - 115^{\circ}$

$$E_{
m proton}=3.39\,{
m MeV}$$
 at angles $149^\circ\!-\!150^\circ$

500

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration

Analysis

Cross-section calculation:

$$\frac{d\sigma}{d\Omega}^{^{11}\text{B}}(E,\theta) = \frac{N_{^{11}\text{B}}}{N_{^{\text{proton}}} \cdot \frac{N_{^{\text{target}}}}{A_{^{\text{target}}}} \cdot d\Omega \cdot Live_{\%} \cdot Abundance_{^{11}\text{B}}}$$
(1)

$$N_{^{11}\mathrm{B}}$$
:
 $E_{\mathrm{proton}} = 1.03 \,\mathrm{MeV}$ at angles $149^\circ - 150^\circ$

$$E_{
m proton}=3.39\,
m MeV$$
 at angles $149^\circ\!-\!150^\circ$

500

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0

Analysis

Cross-section calculation:

$$\frac{d\sigma}{d\Omega}^{^{11}\text{B}}(E,\theta) = \frac{N_{^{11}\text{B}}}{N_{^{\text{proton}}} \cdot \frac{N_{^{\text{target}}}}{A_{^{\text{target}}}} \cdot d\Omega \cdot \textit{Live}_{\%} \cdot \textit{Abundance}_{^{11}\text{B}}}$$

$$\frac{N_{\rm target}}{A_{\rm target}}$$
:
Backscattering on carbon backing. Target at 0° and 180°:

11B target thickness

(1)

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0	
Results	s - ¹¹ B				

What to present ... ? Angular distribution at 3 MeV:

Sac

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0
Results	s - ¹¹ B			

As function of energy at $149^\circ-150^\circ$: Our results:

Chiari *et al.* (2001):

Our results lie higher

 $\theta = 150^{\circ}$

2.5 3.0

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0
Results	- ¹⁰ B			

As function of energy at $149^\circ-150^\circ$: Our results:

Chiari et al. (2001):

Our results seem to agree with Chiari et al. (2001).

Quick intro	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) 00	EXTRA: acc. calibration 0
Results	s - ¹² C			

As function of energy at $149^{\circ} - 150^{\circ}$: Our results: Gul *et al.* (2011):

Agreement between our results and literature values.

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) ●○	EXTRA: acc. calibration 0
Data:	¹¹ B(p.3 α)			

Beam energy 2.0 MeV.

- \sim 8 hours
- \sim 1e6 triple coincidence events (front-back matched)

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) ●○	EXTRA: acc. calibration 0
Data:	¹¹ B(p.3 α)			

Beam energy 2.0 MeV.

- \sim 8 hours
- \sim 1e6 triple coincidence events (front-back matched)

Quick intro 000	Experimental setup and problems	Proton scattering experiment	¹¹ Β(p,3α) ⊙●	EXTRA: acc. calibration 0	
Analys	is: ${}^{11}B(p,3\alpha)$				

Dalitz plots: FURTHER ANALYSIS NEEDED

$$0^+$$
 state at $E_p = 2.00$ MeV

$$3^-$$
 state at $E_p = 2.65$ MeV

Dalitz plot

< 17 ▶

æ

500

Method:

- 27 Al(p, γ) 28 Si: Sharply defined thresholds at 992 KeV and 1317 KeV (idea from Nuclear Instruments and Methods in Physics Research A340 (1994) 436-441)
- Used Nal detector. Integrate γ counts from 3 MeV to 13 MeV

Sac

Method:

• 27 Al(p, γ) 28 Si: Sharply defined thresholds at 992 KeV and 1317 KeV (idea from Nuclear Instruments and Methods in Physics Research A340 (1994) 436-441)

Sac

Method:

- 27 Al(p, γ) 28 Si: Sharply defined thresholds at 992 KeV and 1317 KeV (idea from Nuclear Instruments and Methods in Physics Research A340 (1994) 436-441)
- ²⁸Si level at $E_{\text{proton}} = 2045.3 \text{ keV}$

Method:

- ${}^{27}\text{Al}(p,\gamma){}^{28}\text{Si:}$ Sharply defined thresholds at 992 KeV and 1317 KeV (idea from Nuclear Instruments and Methods in Physics Research A340 (1994) 436-441)
- ²⁸Si level at $E_{\text{proton}} = 2045.3 \text{ keV}$

Method:

- 27 Al(p, γ) 28 Si: Sharply defined thresholds at 992 KeV and 1317 KeV (idea from Nuclear Instruments and Methods in Physics Research A340 (1994) 436-441)
- ²⁸Si level at E_{proton} = 2045.3 keV

Sac