Low-intensity exotic beam studies using an active-target timeprojection chamber

Alan Howard

Exotic beam opportunities

New and next generation RIB facilities should provide new insight into the structure and reaction dynamics of exotic nuclei

However, many of the most interesting species produced with very low intensities

To fully exploit physics opportunities need to make full use of beams provided

FRIB

G. Savard et al., Nucl. Inst. and Meth. B, 266 (2008) 4086-4091

Typical stable beam studies use beams of order $10^9 - 10^{13}$ particles per second

This is a major challenge facing experimentalists

Active target approach

Target material also acts as detecting medium

Electric field drifts charge towards an anode plane

A position sensitive anode and sampling permit track images to be produced

Reaction vertices can be localised - no loss of resolution with increased target thickness

Full geometric coverage for outgoing ions - simultaneous study of break-up, transfer, incomplete fusion etc.

C.E. Demonchy et al., Nucl. Inst. and Meth. A, 583 (2007) 341-349

Dynamic range can also be a limitation, ways to reduce this however

Choice of targets limited by requirements of detection gas

Physics case

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer & Resonant	Nuclear Structure	${}^{32}Mg(d,p){}^{33}Mg$	3	100	Kanungo
Reactions		Ne(p,p) Ne			
Astrophysical Reactions	Nucleosynthesis	²⁵ Al(³ He,d) ²⁶ Si	3	100	Famiano, Montes
Fusion and Breakup	Nuclear Structure	${}^{8}\mathrm{B}{+}^{40}\mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	⁵⁶ Ni+ ³ He	5-19	1000	Macchiavelli
Resonances	Quasimelecular structures	⁸ He+ ⁴ He	0-3	1000	Suzuki
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS, Nuclear Astro.	⁵⁴ Ni- ⁷⁰ Ni, ¹⁰⁶ Sn- ¹²⁷ Sn	50 - 200	50,000	Garg
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn, 37 Ca - 49 Ca	50 - 200	50,000	Lynch

Prototype AT-TPC

Also a great opportunity to investigate the physics capabilities of the device Half-scale prototype for testing and development of critical components

For example, Micromegas electron amplification and GET (general electronics for TPCs)

Provides essential feedback for development of the full-scale device

Nuclear Instruments and Methods in Physics Research A, **691** (2012), 39-54

Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Prototype AT-TPC: Toward a new generation active target time projection chamber for radioactive beam experiments

D. Suzuki ^{a,*}, M. Ford ^{b,1}, D. Bazin ^a, W. Mittig ^{a,b}, W.G. Lynch ^{a,b}, T. Ahn ^a, S. Aune ^c, E. Galyaev ^a, A. Fritsch ^{a,b}, J. Gilbert ^{b,2}, F. Montes ^a, A. Shore ^{a,b}, J. Yurkon ^a, J.J. Kolata ^d, J. Browne ^{d,a,b}, A. Howard ^d, A.L. Roberts ^d, X.D. Tang ^d

Prototype AT-TPC

Micromegas

Covered by a micromesh, held at a distance of 128 µm by resistive pillars

Uniform amplification properties, very stable with respect to time and position

Rapid collection of +ve ions permits high rate operation

Adjusting individual pad potentials permits varying gain – expansion of dynamic range

However, micromesh is **very** sensitive – any deformation is catastrophic

Data stream

Use case – ¹⁰Be + ⁴⁰Ar Fusion

Many open questions remain

Role of positive Q-value transfer channels

Effect of skin and halo structures

Influence of other channels, e.g. scattering, break up and transfer

Competition between complete and incomplete fusion

J.J. Kolata and E.F. Aguilera, Phys. Rev. C **79** (2009) 027603

Experimental aims and considerations

Move the prototype AT-TPC to Notre Dame and look at ¹⁰Be fusion with ⁴⁰Ar

Opportunity to develop knowledge and technique for future use

¹⁰Be fusion measured on ²⁰⁹Bi previously extend data to lower Z C. Signorini *et al*., Nuc Phys A, **735** (2004), 329-344

Coulomb barrier is at ~15 MeV, beam energy of 35 MeV permits measurement above and below barrier

SRIM calculation for ¹⁰Be into 235 torr P-10 at 35 MeV

RNB production at Notre Dame

Trigger conditions

Trigger rate limited to 10-20 Hz (new electronics > 100Hz)

Including hardware cut on TOF reduces rate to <200 Hz

Pulse length = ion range

Further hardware gate on ion range in AT-TPC reduces rate to <20Hz

Option exists to trigger also on radius or back-to-back quadrants

and the second se

Outcomes

We can certainly quantitatively measure fusion

Also – gas properties are very important, e.g. purity, temperature/pressure

Other work

PHYSICAL REVIEW C 87, 054301 (2013)

NOTRE DAME Resonant α scattering of ⁶He: Limits of clustering in ¹⁰Be

D. Suzuki,^{1,2,*} A. Shore,^{1,3} W. Mittig,^{1,3} J. J. Kolata,⁴ D. Bazin,¹ M. Ford,^{1,†} T. Ahn,¹ F. D. Becchetti,⁵ S. Beceiro Novo,¹ D. Ben Ali,⁶ B. Bucher,⁴ J. Browne,^{1,3,4} X. Fang,⁴ M. Febbraro,⁵ A. Fritsch,^{1,3} E. Galyaev,¹ A. M. Howard,⁴ N. Keeley,⁷ W. G. Lynch,^{1,3} M. Ojaruega,⁵ A. L. Roberts,⁴ and X. D. Tang⁴

Cluster structures in ^{14}C via α scattering of ^{10}Be

Adam Fritsch, MSU

Resonant proton scattering of ¹²⁴Sn

Exploratory run for planned ¹³²Sn run

Implantation of ¹²B and triple alpha decay of ¹²C

Cathleen Fry, MSU

Backgammon Micromegas

Full-scale AT-TPC

Full-scale AT-TPC

Full-scale AT-TPC

Twice the size of prototype – 1 m long by 0.5 m in diameter

Anode plane will have > 10,000 triangular pads and will provide much improved radial and ϕ sensitivity

By H. Pommier and W. Mittig

Chamber to be housed in solenoidal field, providing both containment and identification of ejectile ions

Will have full particle tracking included in analysis code

Acknowledgements

A.M. Howard, J.J. Kolata, A. Roberts Department of Physics, The University of Notre Dame, USA

W. Mittig, T. Ahn, D. Bazin, S. Beceiro-Novo, Z. Chajecki, A. Fritsch, W.G. Lynch, A. Shore National Superconducting Cyclotron Laboratory, Michigan State University, USA

F.D. Becchetti , M. Febbraro , R.O. Torres-Isea Department of Physics, University of Michigan, USA

