

NUSPIN 2017

26-29 June 2017 GSI Europe/Berlin timezone

Investigation of internal background of ⁷Li and ⁶Li enriched CLYC scintillators

Agnese Giaz

Università di Padova e INFN di Padova

Outline

- ✓ Scintillators detectors for nuclear physics
- ✓ Elpasolite crystals Why they are so interesting?
- ✓ Neutron detection capability
- ✓ Internal background in different CLYC scintillators and in a CLLB(C) samples
- ✓ Internal background can affect nuclear physics experiment?
- ✓ Conclusions

Scintillators for nuclear physics experiments

Detector requirements:

- ✓ Measurement of high energy gamma rays (~ 15 MeV) → Good efficiency
- ✓ Good Time resolution
- ✓ Imaging properties to reduce Doppler Broadening
- ✓ Energy resolution is not mandatory but very useful for:
 - calibration
 - measurement and studies of discrete structures
- ✓ Possibility to discriminate between gamma rays and neutrons using TOF and PSD

Scintillators are the best candidates for this kind of experiments

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Principal decay time [ns]
Nal:Tl	38000	415	6-7	3.7	230
CsI:TI	52000	540	6-7	4.5	1000
LaBr ₃ :Ce	63000	360	3	5.1	17
CLLB:Ce	60000	410	2.9	4.2	55, ~ 270
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000

Elpasolite scintillators

The elpasolite crystals were developed approximately 10 years ago.

Excellent performances in terms of gamma and neutron detection.

Examples: CLLB:Ce (Cs₂LiLaBr₆:Ce), CLLC:Ce (Cs₂LiLaCl₆:Ce) and CLYC:Ce (Cs₂LiYCl₆:Ce)

Characteristics:

- ✓ High energy and time resolution
- Neutron-gamma pulse shape discrimination capability
- ✓ High proportionality
- ✓ High efficiency for gamma and neutrons
- ✓ High light yield
- ✓ Low cost

PSD is based on the difference in the scintillation decay response to gamma and neutrons.

Neutron detection

1 CLYC-6 1" x 1"

1 CLLB(C) 1" x 1"

1 CLYC-7 1" x 1"

1 CLYC-7 2" x 2"

1 CLYC-7 2" x 2"

Fast neutrons:

- ✓ 35 Cl(n,p) 35 S → Q-value = 0.6 MeV $\sigma \approx 0.2$ barns at $E_n = 3$ MeV
- ✓ ³⁵Cl(n, α)³²P → Q-value = 0.9 MeV $\sigma \approx 0.01$ barns at E_n = 3 MeV

 $E_{p/\alpha} = (E_n + Q) q_{p/\alpha} \rightarrow p \text{ or } \alpha \text{ energy is linearly related to n}$ energy \rightarrow CLYC is a neutron spectrometer

 $E_n > 6$ MeV other reaction channels on detectors isotopes \rightarrow not easy neutron spectroscopy

The kinetic energy of the neutrons can be measured via:

- 1) Time of Flight (TOF) techniques.
- 2) The energy signal

Thermal neutrons:

✓ ⁶Li(n, α)t → Q-value = 4.78 MeV σ = 940 barns at $E_n = 0.025$ eV.

To fast thermal detection:

⁶Li (⁶Li = 95%) enriched CLYC \rightarrow CLYC-6

To fast neutron detection: ⁷Li (⁷Li > 99%) enriched CLYC→ CLYC-7

Internal background measurements

The detectors were placed inside a lead shield. The shield was changed from 5 cm up to 10 cm.

Calibration run with sources (137 Cs and 60 Co)

Data with and without shield were compared.

The measurements runs for few days.

Internal Radiation

Measurements performed in Milan using a 95% enriched ⁶Li 1"x1" CLYC:Ce scintillator

- ✓ The internal radiation is practically absent in CLYC:Ce.
- Internal radiation is not affected by any kind of shield.
- The internal radiation is weaker that 0.02
 events/cm³
- Thermal Neutrons are weakly affected by the Pb shield

1" x 1" CLYC-6 scintillator

1" x 1" CLYC-7 scintillator

2" x 2" CLYC-7 scintillator

3" x 3" CLYC-7 scintillator

How much is the particle internal activity?

Internal background in nuclear physics experiments

A tool to study nuclear structure properties is the gamma decay of GDR (Giant Dipole Resonance).

GDR can be built on excited nucleus (usually fusion-evaporation reaction and compound nucleus) or on ground state.

Beam Nucleus

Neutron Flux [n/s]	Neutron detected in the 2" x 2 " CLYC [n/s/keV/cm ³]*
101	2.18 10 ⁻⁵
10 ²	2.18 10-4
10 ³	2.18 10 ⁻³
104	2.18 10-2
10 ⁵	2.18 10-1
106	2.18 10 ⁰
107	2.18 10 ¹
10 ⁸	2.18 10 ²

Max number of background events is $5 \ 10^{-6} \ n/s/keV/cm^3$ for the 2" x 2" CLYC. To have a good subtraction of the background, it has to be at least 10 times smaller than the neutron events. To satisfy this condition the neutron flux has to be around $10^2 \ n/s$. \rightarrow the flux is in the order of the flux of fusion-evaporation reactions ($10^2 - 10^3 \ n/s$).

* The neutron efficiency was estimated from the values measured for $1'' \times 1''$ CLYC-7 detector

CLLB(C) internal background

- ✓ Density of 4.2 g/cm³, light yield of 60 ph/keV, high linearity.
- ✓ ⁶Li enriched
- ✓ Excellent Energy resolution at 622 keV 3%.
- Possibility to perform gamma and neutron discrimination.
- ✓ ³⁵Cl ions to detect and perform neutron spectroscopy

- ✓ The internal radiation due to the presence of La.
- ✓ Alpha Internal radiation is not affected by the shield.
- ✓ The internal radiation is weaker comparable with LaBr₃:Ce internal radiation

Conclusion

- ✓ The elpasolite crystals are suitable for nuclear physics experiments, in particular CLYC and CLLB(C) scintillators
- ✓ The internal background was measured for 4 different CLYC samples
 - ✓ 1" x 1" CLYC-6: activity 0.0001 counts/s/cm³
 - ✓ 1" x 1" CLYC-7: activity 0.0003 counts/s/cm³
 - ✓ 2" x 2" CLYC-7: activity 0.0015 counts/s/cm³
 - ✓ 3" x 3" CLYC-7: activity 0.0002 counts/s/cm³
- ✓ The internal activity is at least 10 times smaller than the neutron flux in nuclear physics experiments.
- ✓ The CLLB(C) energy resolution was measured.
- ✓ The first measurement on the CLLB(C) internal background was performed.

Acknowledgments

N. Blasi¹, S. Brambilla¹, F. Camera^{1,2}, A. Mentana^{1,2}, B. Million¹, and S. Riboldi^{1,2}.

> ¹INFN Sezione di Milano ²Università degli Studi di Milano

ENSAR2-PASPAG WG New Materials

THANK YOU FOR THE ATTENTION