## Instrumentation and Physics Cases for EURISOL- DF, the next step towards EURISOL

Franco Camera

University of Milano Statale, Department of Physics INFN section of Milano

### **Outline:**

- Old and New Scintillators, test, measurements and R&D:
  - LaBr<sub>3</sub>:Ce, LaBr<sub>3</sub>:Ce:Sr<sup>+</sup>
  - Elpasolite <u>CLYC</u> CLLBC
  - CeBr<sub>3</sub>, Srl<sub>2</sub> and GYGAG
- (Position sensitivity in 3"x3" LaBr<sub>3</sub>:Ce continuous crystals)
- Some physics cases for EURISOL-DF
- Conclusions

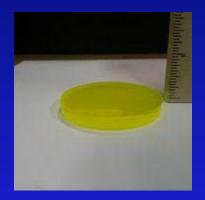
Sorry in advance if I did not cite all the works and R&D activity which have been done so far

### Important

In this talk we concentrate on scintillators. HPGe detector or in general solid state detectors will not be discussed. Semiconductor detectors have an energy resolution which will <u>never</u> be reached by scintillators (because of the energy gap, the conversion light-electrons, Fano factor, ... )

### **First Generation 'old' scintillators**

- Nal  $\Rightarrow$  acceptable energy resolution, strong non linearity in energy, bad time resolution
- $BaF_2 \implies bad energy resolution, excellent time resolution$
- BGO  $\Rightarrow$  bad energy resolution, bad time resolution, excellent efficiency
- CsI  $\Rightarrow$  good for the measurement of light charged particles


### Second Generation 'almost new or new' scintillators

| Lanthanum Halide | $\Rightarrow$ LaBr <sub>3</sub> :Ce, LaCl <sub>3</sub> :Ce |
|------------------|------------------------------------------------------------|
| New Matherials:  | $\Rightarrow$ Srl <sub>2</sub> :Eu, CeBr <sub>3</sub>      |
| Elpasolide :     | $\Rightarrow$ CLYC, CLLB, CLLBC, CLLC                      |
| Ceramic          | $\Rightarrow$ GYGAG                                        |

Third Generation scintillators

**Co Doped** LaBr<sub>3</sub>:Ce - Sr<sup>++</sup>

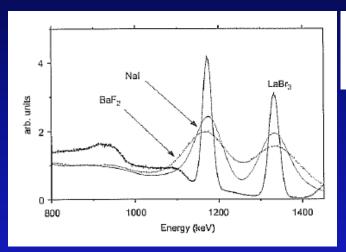
| Material             | Light Yield<br>[ph/MeV] | Emission λ <sub>max</sub><br>[nm] | En. Res. at 662<br>keV [%] | Density [g/cm <sup>2</sup> ] | Pricipal decay<br>time [ns] |
|----------------------|-------------------------|-----------------------------------|----------------------------|------------------------------|-----------------------------|
| Nal:Tl               | 38000                   | 415                               | 6-7                        | 3.7                          | 230                         |
| CsI:TI               | 52000                   | 540                               | 6-7                        | 4.5                          | 1000                        |
| LaBr₃:Ce             | 63000                   | 360                               | 3                          | 5.1                          | 17                          |
| Srl <sub>2</sub> :Eu | 80000                   | 480                               | 3-4                        | 4.6                          | 1500                        |
| CeBr <sub>3</sub>    | 45000                   | 370                               | <5%                        | 5.2                          | 17                          |
| GYGAG:Ce             | 40000                   | 540                               | <5%                        | 5.8                          | 250                         |
| CLYC:Ce              | 20000                   | 390                               | 4                          | 3.3                          | 1 CVI 50, ~1000             |










Now there are, in addition to the one listed above, some new materials (CLLB, CLLBC, LaBr3:Ce-Sr)



Picture done in Milano

It was discovered in 2001 in Delft It is now a 'known' scintillator detector

### - it is in Knoll book !



**Figure 8.14** Comparison of the  ${}^{60}$ Co pulse height spectrum measured with 1-inch × 1-inch LaBr<sub>3</sub>, NaI, and BaF<sub>2</sub> (From Nicolini et al.<sup>215</sup>).

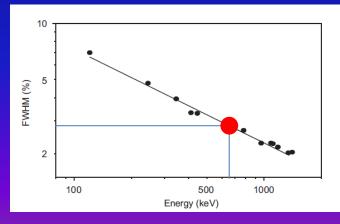
E.V.D. van Loef et al. Appl. Phys. Lett. 79(2001)1573

R. Nicolini et al. NIM A582>(2007)554

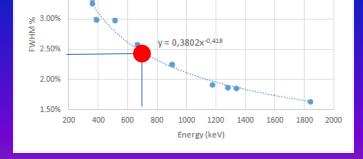
4.00%

3.50%

LaBr<sub>2</sub>:Ce-Sr<sup>+</sup>

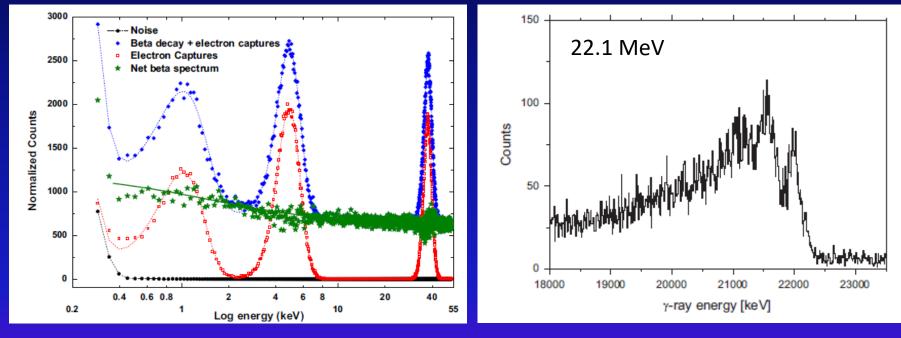

#### Several arrays have been designed

- HECTOR<sup>+</sup>
- FATIMA
- PARIS
- LaBr<sub>3</sub>:Ce in ROSPHERE and ELI-NP
- Darmstadt LaBr<sub>3</sub>:Ce array
- HIγS array
- OSCAR
- ALBA


.....

There is something new Co-Doped LaBr<sub>3</sub>:Ce LaBr<sub>3</sub>:Ce-Sr<sup>+</sup> B390 (St.Gobain)

Better energy Resolution PSD Possible




LaBr<sub>3</sub>:Ce R. Nicolini et al. NIM A582(2007)554

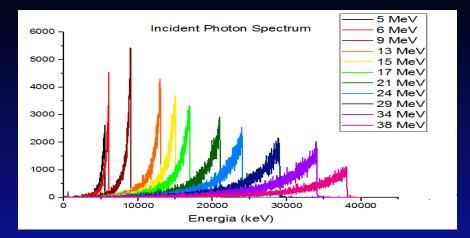


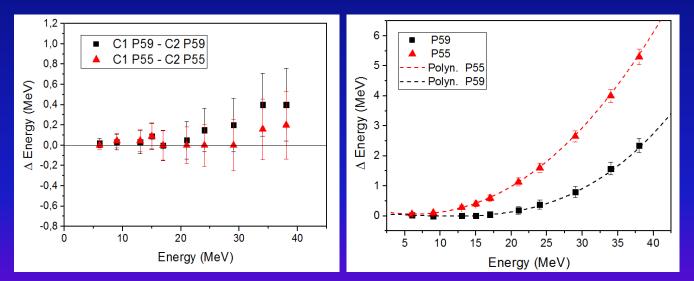
G. Colombi – private communications

LaBr<sub>3</sub>:Ce detectors provide, at the same time, clean spectroscopic information from a few tens of keV up to tens of MeV, being furthermore able to clearly separate the full energy peak from the first escape one. This is particularly true for large volume detectors which have Full Energy Peak efficiency for high energy  $\gamma$ -rays



3"x3" LaBr3:Ce F.G.A. Quarati et al. Appl. Rad. and Iso. 108(2016)30


3.5" x 8" LaBr3:Ce A. Giaz et alk et al. NIM A 729(2013)910


PMT non linearity and in-homogeneity in large volume crystals might limit the energy resolution to 0.5-1%. Intrinsic LaBr<sub>3</sub>:Ce non linearity may affect energy resolution for  $E_{\gamma}$  < 100 keV

Spring-8 - New Subaru

#### **NewSUBARU**:

- laser Compton scattering (LCS)
- E<sub>e-</sub> = 0.5 1.5 GeV.
- Laser Nd(w): YVO<sub>4</sub> with wavelength 1064 nm
- 'Almost'-monocromatic gamma-rays





A shift of 10.2 MeV makes the two NON- linearity curves overlap

Simulation nicely reproduces measured spectra

Two 3.5" x 8" crystals have the same response (within the error bars) for high energy g-rays

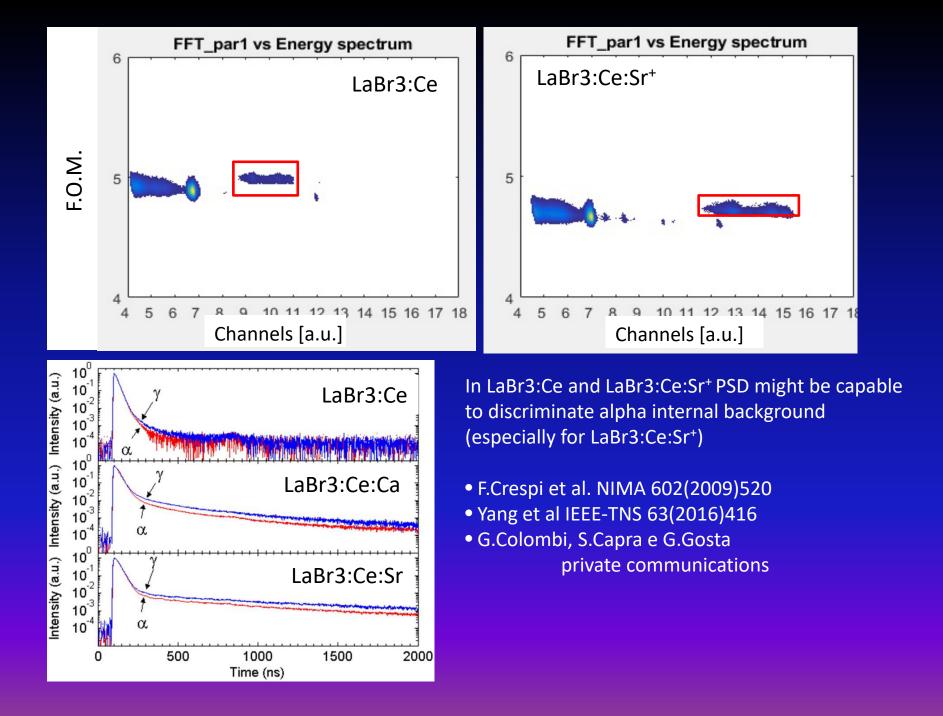
Two PMTs (same model, same production run) have different responses.



a – detector size –Hamamatsu H6533 PMT (0.7 ns risetime) b – PMT induced effect

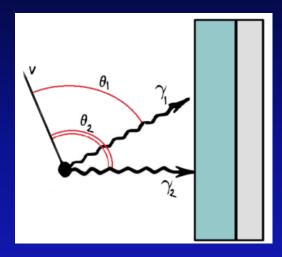
In general, the larger is the PMT the 'slower' is its time response.

LaBr<sub>3</sub>:Ce (whatever is the size) has a time resolution < 2 ns

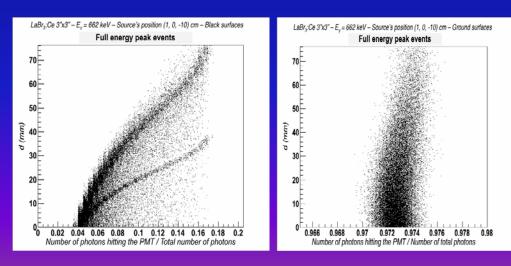

Extremely fast timing (FWHM < 300 ps) might be very difficult to achieve with large volume (i.e.  $3'' \times 3''$ ) LaBr<sub>3</sub>:Ce

Small LaBr<sub>3</sub>:Ce Detectors  $\Rightarrow$  excellent time performances

- They can be used for lifetime measurement


- $-\Delta T = 50 \text{ ps}$
- See N. Marginean et al. Eur. Phys. J. A 46, 329–336 (2010)
- A very fast tube is needed (XP20D0) M. Moszynski et al. A 567 (2006) 31–3
- Energy resolution is not optimized (3.6% at 511 keV)

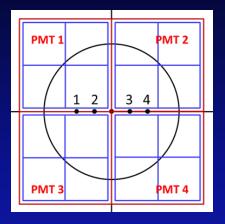
- Fast Timing It is a very powerful technique applied in several experiment in ROSPHERE, FATIMA array was designed for that. The important aspect is an highly tuned and well maintained array of small LaBr<sub>3</sub>:Ce

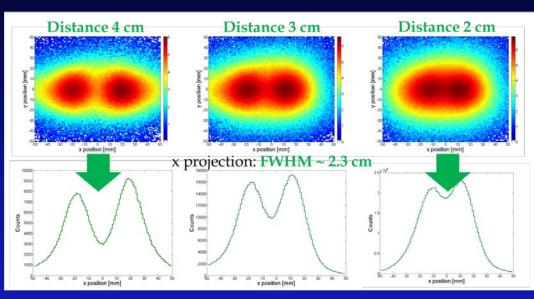


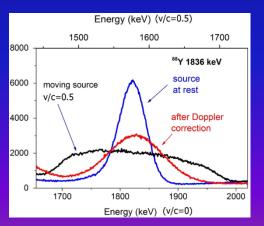

### **Position Sensitivity**

Position sensitivity in thick continuous crystals with diffusive surfaces is not for medical application but – for example – for doppler broadening correction




- Multiple interation points  $\Rightarrow$  Multiple light sources
- Large volume crystals  $\Rightarrow$  Transport of scintillation light from sources to photocathode
- Diffusive surfaces  $\Rightarrow$  it is the major issue
  - to have good energy resolution one need to collect all the scintillation photons, namely to collect the reflected light (it does not carry position infomation)





This simulation shows that in a 3"x3" LaBr3 detector only 5% of the scintillation light is directly collected, the rest was reflected at least one time

## Position Sensitivity (3"x3" LaBr<sub>3</sub>:Ce)

The resolution in position is such that two events 4 cm distant are rather clearly separated.







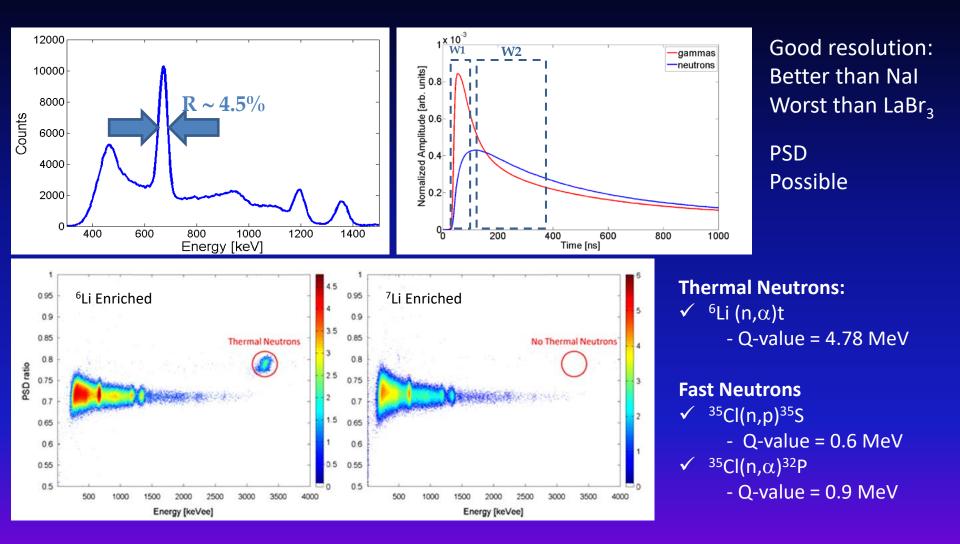
12 Segments – instead of 256 segments

gain matching is complex

Distance d = 20 cm
The authors mimic a v/c = 0.5% source of 1836 keV
No doppler broadening correction FWHM ~ 250 keV
With doppler broadening correction FWHM ~ 100 keV
Source at rest ~ 50 keV

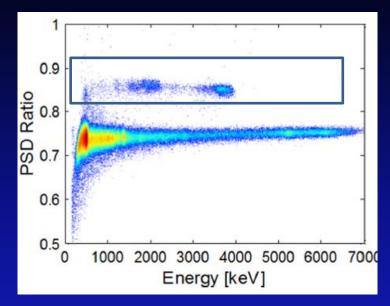
#### N.Blasi et al. NIM A 839(2016)23

## Elpasolite scintillators: CLYC, CLLC, CLLB and CLLBC

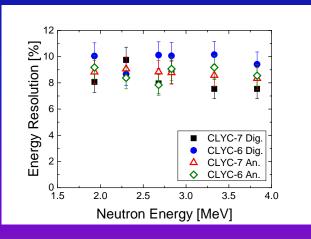

- The elpasolite crystals were discovered approximately 10 years ago.
- Excellent performances in terms of **gamma and neutron detection**.

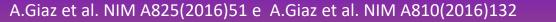
### They are Gamma and Neutron detectors:

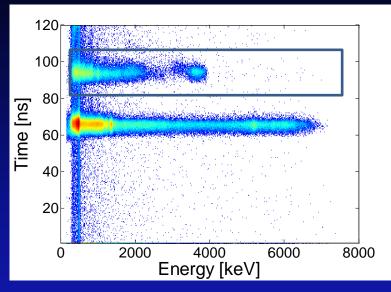
- High energy and time resolution
- Neutron-gamma PSD capability
- High **linearity**
- CLYC is commercially available up to 3" x 3"
- CLLB is commercially available up to 1.5 " x 1.5"
- CLLBC is commercially available up to 1" x 1"


|                                 | CLYC               | CLLC               | CLLB       | CLLBC  |
|---------------------------------|--------------------|--------------------|------------|--------|
| Density<br>[g/cm <sup>2</sup> ] | 3.3                | 3.5                | 4.2        | 4.2    |
| Emission<br>[nm]                | 290 CVL<br>390 Ce⁺ | 290 CVL<br>400 Ce⁺ | 410 $Ce^+$ | 410 nn |
| Decay Time<br>[ns]              | 1 CVL<br>50,~1000  | 1 CVL 60,<br>≤ 400 | 55,≤270    |        |
| Light yield<br>[ph/MeV]         | 20000              | 35000              | 45000      | 45000  |
| Light yield<br>[n/MeV]          | 70000              | 110000             |            | 140000 |
| En. Res. at<br>662 keV [%]      | 4                  | 3.4                | 2.9        | 3.3%   |
| PSD                             | Excellent          | Excellent          | Possible   | Yes    |

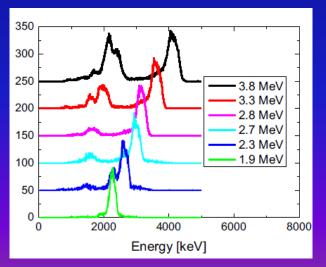
### CLYC (Cs<sub>2</sub>LiYCl<sub>6</sub>:Ce<sup>3+</sup>) scintillator





 $E_{p/\alpha}=(E_n + Q) q_{p/\alpha} \implies$  Fast n spectroscopy  $E_n < 6$  MeV not to have 3 body channels

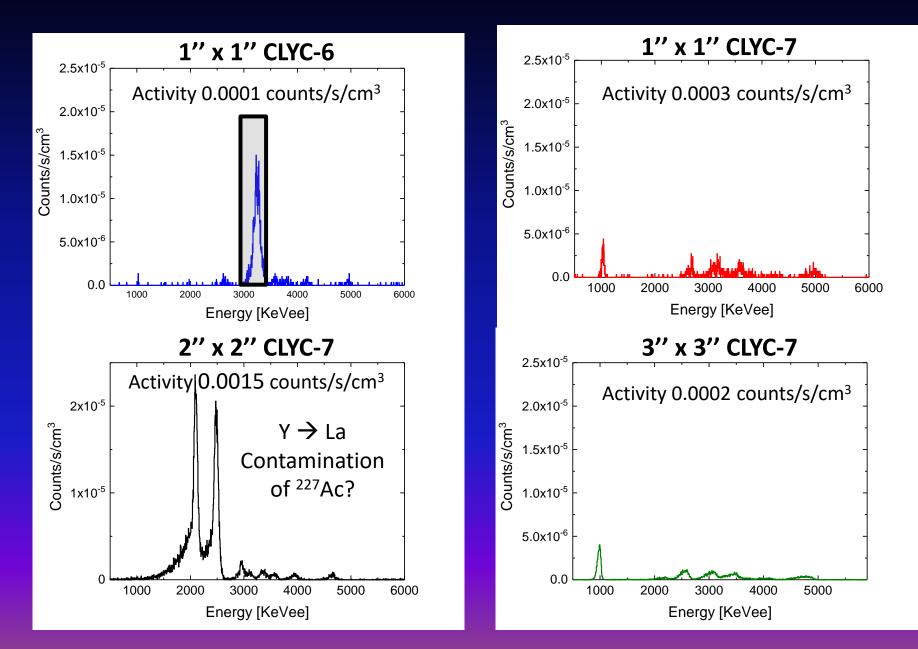

### Fast Neutron Spectroscopy




#### PSD Ratio vs Energy in CLYC (keVee)

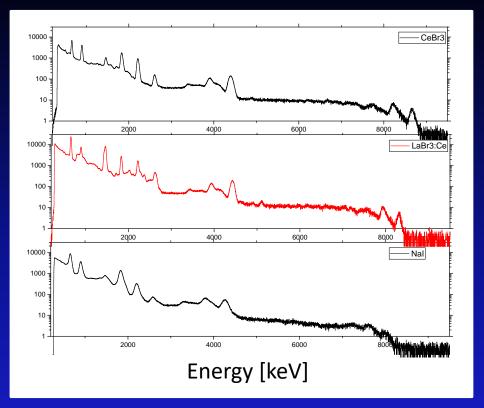







#### TOF vs Energy in CLYC (keVee)

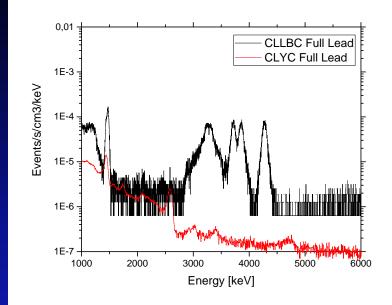


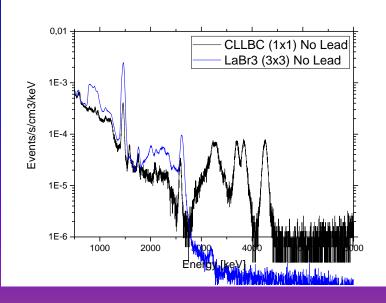

Energy spectra of Neutrons

## Particle internal activity

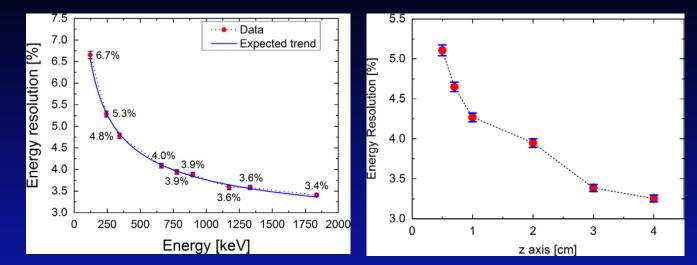


### LaBr<sub>3</sub>:Ce - CeBr<sub>3</sub> – Nal (3"x3")

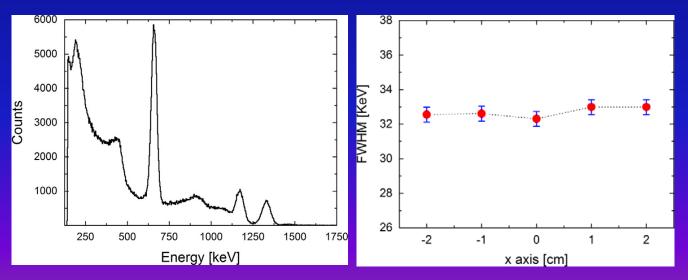

## **CLLBC** scintillator




 $\rm CeBr_3$  has an energy resolution a little worser than  $\rm LaBr_3:Ce$  but has no  $^{138}\rm La$  internal background


The internal radiation of CLLBC is comparable to that of LaBr<sub>3</sub>:Ce

Internal radiation of CLYC is extremely low if compared to LaBr<sub>3</sub>:Ce






## Srl<sub>2</sub>



GYGAG



It is a ceramic detector It has a strong afterglow It emits in the yellow (530 nm) Good for APD , ...

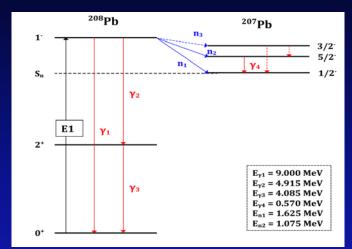
#### A.Giaz et al. NIM A804(2015)212

# Scintillators should be used when HPGe cannot be used or/and when efficiency, timing and count rate is an important issue

- Large volumes are needed
  - high efficiency at high energy
  - large solid angles should be covered
  - .....
- Nanosecond (or better) time resolution is needed
  - Large background
  - Lifetime measurements
  - Very fast beam repetition rate
  - .....
- Large count rate are expected
  - Several scintillators are very fast (in 200 ns the signal rise and fell)
  - Scintillators have always the same pulse shape
  - Pile up disentanglement

- .....

- Good (not excellent) energy resolution is needed
  - Few gamma transitions are expected (at least separated
  - provide an efficient gate
  - Measurement of gamma transitions from states at energy higher than the particle binding energy


- .....

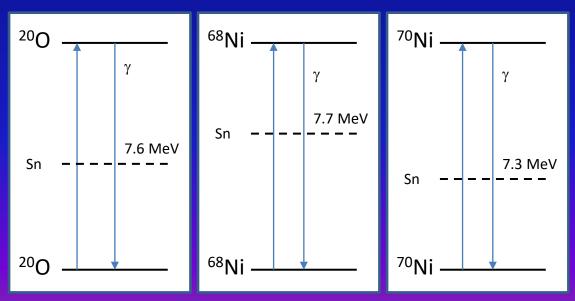
- Neutron Spectroscopy
- Total Price and detector maintenance is an issue

• .....

### **Physics case:** gamma and neutron decay of PDR and IVGDR

#### They are located higher than the particle binding energy




Measurement of high and low energy  $\gamma$ -rays

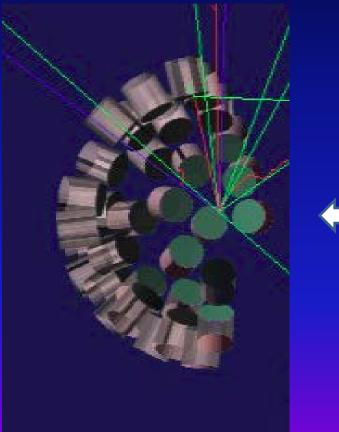
- Large efficiency
- branching ratio ~1%

Neutron Spectroscopy

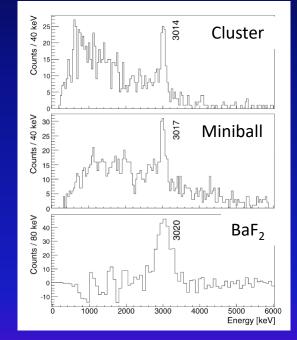
**Coincidence Measurement** 

Large Background




Now are possible only PDR measurement on specific neutron rich nuclei

IV and IS probes


- Branching ratio measurement
- Wave Function of PDR
- Neutron skin

### **Physics case:** Coulomb scattering reactions using radioactive beams

- extremely exotic nuclei
- nothing is known
- High efficiency and clean spectra are required
- Energy resolution is not mandatory



#### An example from the past (<sup>36</sup>Ca)



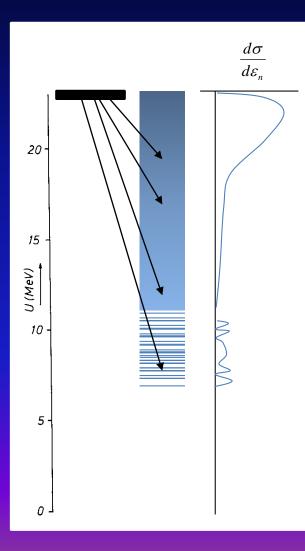
P. Doornebal et al. PLB647(2007)237

### Physics case: Pygmy states populated through beta decay

- High Q Value ( $Q_{\beta} > 7 \text{ MeV}$ )

- Good Selection rules to populate PDR using  $\beta$  decay

| Mother            | $J^{\pi}$         | Daughter          | $S_n$ [keV] | $Q_{\beta}$ [keV] | $P_{\beta n} [\%]$ |
|-------------------|-------------------|-------------------|-------------|-------------------|--------------------|
| <sup>48</sup> K   | (2-)              | <sup>48</sup> Ca  | 9945        | 12090             | 1.1                |
| <sup>50</sup> K   | $(0^-, 1^-, 2^-)$ | <sup>50</sup> Ca  | 6353        | 14220             | 22.5               |
| <sup>84</sup> Ga  | $(0^{-})$         | <sup>84</sup> Ge  | 5243        | 12900             | 42.5               |
| <sup>86</sup> Br  | $(1^{-})$         | <sup>86</sup> Kr  | 9857        | 7626              |                    |
| <sup>96</sup> Y   | 0-                | <sup>96</sup> Zr  | 7856        | 7096              |                    |
| <sup>98</sup> Y   | $(0)^{-}$         | <sup>98</sup> Zr  | 6415        | 8824              | 0.33               |
| <sup>130</sup> In | 1(-)              | <sup>130</sup> Sn | 7596        | 10249             | 0.92               |
| <sup>136</sup> I  | $(1^{-})$         | <sup>136</sup> Xe | 8084        | 6930              |                    |
| <sup>140</sup> Cs | 1-                | <sup>140</sup> Ba | 6428        | 6220              |                    |
| $^{142}Cs$        | 0-                | <sup>142</sup> Ba | 6181        | 7325              | 0.09               |
| <sup>144</sup> Cs | 1(-)              | <sup>144</sup> Ba | 5901        | 8500              | 2.9                |
| <sup>146</sup> Cs | 1-                | <sup>146</sup> Ba | 5495        | 9370              | 12.4               |


P.M.Sceck et al PRL 116/2016)132501

From the conclusion of the paper

" ..  $\beta$  decay populates level associated to the PDR but only a fraction of those .....  $\beta$  decays represent an additional probe for PDR studies. "

### **Physics case:**

Measurement of the nuclear level densities starting from the measurement of neutron evaporation spectra in exotic nuclei



Starting from the measurement of the neutron emission cross section and an analysis in the framework of statistical theory of nuclear reaction it is possible to measure the nuclear level density

## Conclusions

#### • In this talk we concentrate on scintillators.

Semiconductor detectors have an energy resolution which will <u>never</u> be reached by scintillators (because of the energy gap, the conversion light-electrons, Fano factor, ... )

## • Scintillators should be used with HPGe or when HPGe cannot be used (when efficiency, timing and count rate is an important issue)

- Large volumes are needed
- Nanosecond (or better) time resolution is needed
- Large count rate are expected
- Good (not excellent) energy resolution is needed
- Neutron Spectroscopy
- Total Price and detector maintenance is an issue

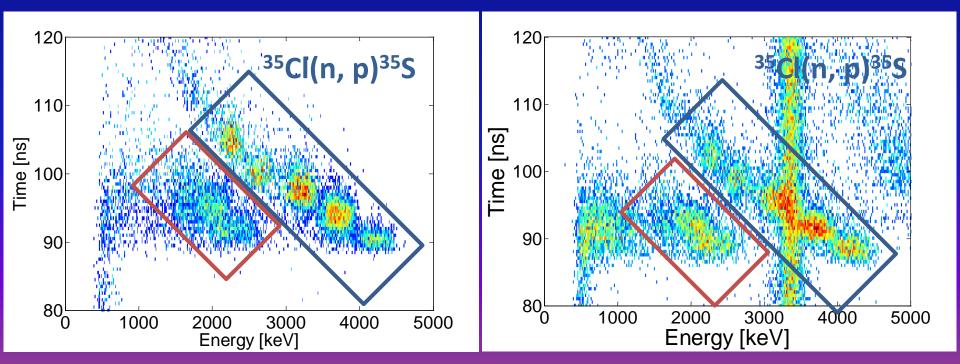
## • Scintillators world is rapidly evolving and several new materials arrived, arrive and will arrive on the market

#### • LaBr<sub>3</sub>:Ce, CLLB, CLLB, CLYC, CeBr<sub>3</sub>, CLLBC, LaBr<sub>3</sub>:Ce:Sr<sup>+</sup>

#### • There are some/several physics cases where one need the use of scintillators: for example

- Measurement of IVGDR and PDR gamma decay
- Measurement of first excited states in very exotic nuclei
- Measurement of PDR using large Q values beta decays
- Measurement of Nuclear level density of exotic nuclei

## Thank you for the attention


## Misura di uno spettro continuo di neutroni

### Spettro di neutroni continuo:

Sommo i contributi delle varie energie di neutroni monocromatici.

La somma della matrice tempo energia (con gate gate sui neutroni, usando PSD) mi mostra che è possibile separare i contributi delle due reazioni.

La regione individuata in rosso include il contributo della reazione  ${}^{35}Cl(n,\alpha){}^{32}P$ , ma anche  ${}^{35}Cl(n,p){}^{35}S*$  (Energia 1° stato eccitato = 1572 keV)

