

CALIFA Demonstrator @ Krakow Benjamin Heiss

PSI Seminar January 10th 2018

R³B Reactions with radioactive beams

R³B @ FAIR

Reactions with Radioactive Relativistic Beams

- One of the pillars of NUSTAR
- ٠
- ٠

3

TUTT

QFS challenges: γ rays

high Doppler (β = 0.82) shift of γ rays in inverse kinematics

measure emission angle for Doppler reconstruction

 $E_{\gamma} = \gamma E_{\rm L} \left(1 - \beta \cos \left(\theta \right) \right)$

CALIFA Requirements

CALorimeter for the In Flight detection of γ -rays and light charged pArticles

100 keV $\lesssim E_{\gamma} \lesssim 30$ MeV, $\frac{\Delta E}{E}\Big|_{\gamma} (1 \text{ MeV}) \lesssim 6\%$ $E_p \lesssim 700 \text{ MeV}, \quad \frac{\Delta E}{E}\Big|_p (100 \text{ MeV}) \lesssim 2\%$

Barrel:

- 1952 CsI(TI) scintillation crystals (0,7 μs + 3,3 μs)
 + LAAPD readout
- Direct energy measurement of stopped protons up to 280 MeV

iPhos Endcap:

- 512 CsI(TI) scintillation crystals
- Protons no longer stoppable -> Energy reconstruction

CEPA:

96 LaBr₃ (16 ns) + LaCl₃ (28 ns) Phoswich detectors + PMT readout Highest Rates, largest Doppler shift, smallest Doppler broadening 62

QFS challenges: LCP

measurements of light charged particles(LCP)

- emission angle (excitation energy, momentum)
- total energy
- Punch throughs possible, need energy reconstruction!

CALIFA Requirements

QFS inverse kinematics

- PSI Presentation by Sebastian Reichert this year
- ¹⁶O(p,2p)¹⁵N
- Data taken at RIKEN with 290 AMeV ¹⁶O beam on PP target (inverse kinematics)
- 1 MeV resolution σ
- Complicated analysis with 1mrad tracking

QFS inverse kinematics

QFS normal kinematics

(p,2p) in normal kinematics

- Small Doppler shift of γ-rays
 - Both protons define full kinematics Only stable isotopes for targets

Test experiment in Krakow

- Well known system
- Well separated γ ray
- Test demonstrator detection capabilities

Target choice

Goal: Measuring p,2p reaction in coincidence with excitation γ rays from residual nucleus

CALIFA

Chosen reaction : ${}^{16}O(p,2p){}^{15}N$ 40000 (b) g ×1/10 32 30000 Number of events 12: g.s. 20000 s-hole state 10000 C 20 40 E_x(¹⁵N) (MeV)

Bronowice Cyclotron Center Krakow

• Proteus C-235 Cyclotron

- E = 70 230 MeV monoenergetic proton beam, I = 1 500 nA, 200 MeV used in experiment
- Medical and scientific facility (2 medical and 1 scientific beamline)
 - Cancer therapy with special rotating gantry

пп

CALIFA Demonstrator Petal

- Detectors constructed at different locations:
 - Darmstadt
 - Santiago de Compostela, Spain
 - Lund, Sweden
- 64 CsI(TI) crystals in one petal (3 single and 1 double exist)
- Carbon fiber support structure
- Systematic testing required

DSSSD and electronics

Double sided silicon strip detector:

- Dimensions: 60 mm x 60 mm x 300 µm
- # Strips: 32 on front and back
- 1.8 mm strip width

Electronics:

Readout with FEBEX3, FAB cards and MBS

First time with two crates

Total channels: 320

Simulation QFS

Benjamin Heiss

Simulation QFS

Simulation elastic (p,p) scattering

ПΠ

Benjamin Heiss

¹²C calibration

Plastic Target

ПΠ

First beam measurements with polypropylene target 600 μm

Benjamin Heiss

Vertex reconstruction

Opening angle cut

Benjamin Heiss

Proton sum energy resolution

ПП

Calibration comparison

No Target petal correlation

Vertex reconstruction

Benjamin Heiss

No Target after vertex rec.

Benjamin Heiss

No Target γ rays

No target opening angle

Water Target petal correlation

Benjamin Heiss

Water Target vertex cut

PID proton cut

Water target opening angle

proton sum energy resolution

Solution Science Scie

TUT

Coincident γ ray spectrum

Coincident γ ray spectrum

Benjamin Heiss

Coincident γ ray spectrum

Summary and Outlook

- (p,2p) in normal kinematics is ideal calibration experiment!
- Water jet target works fine, data can be clearly separated from the background
- calibration good starting point for proton calibration
 > ongoing work!
- First results from the water target look promising, 1/2⁻ and 3/2⁻ states are clearly separated
- γ energy resolution under realistic circumstances (1,6 %)
- extract crossection for ¹⁶O(p,2p)
- Phase 0:
 - ➤ more auto calibration for 2000 crystals
 - proton calibration fine tuning
 - Standard experiment for CALIFA commissioning
 - > 3x Krakow already planned!

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Benjamin Heiss, Philipp Klenze, Patrick Remmels, Felix Stark, Max Winkel

Calibration Backup

Barrel:

- 1952 CsI(TI) scintillation crystals
 (0,7 μs + 3,3 μs) + LAAPD readout
- Direct energy measurement of stopped protons up to ~300 MeV

iPhos:

- 512 CsI(TI) crystals + LAAPD readout
- Full energy reconstruction of punched through protons by PID

CEPA:

96 LaBr₃ (16 ns) + LaCl₃ (28 ns)
 Phoswich detectors + PMT readout

Correlations ⁶⁰Co

Benjamin Heiss

QFS Generator

High Level Trigger

Fast, detector-wide multiplicity, sum energy, geometry trigger generation

Benjamin Heiss

ПΠ

CALIFA Demonstrator

- Detectors constructed at different locations:
 - Darmstadt
 - Santiago de Compostela, Spain
 - Lund, Sweden
- 64 CsI(TI) crystals in one petal (3 single and 1 double exist)
- Carbon fiber support structure
- Systematic testing required

Detection of γ rays

CALIFA@Lisbon (Campus Technologico e Nuclear CTN)

- 3 MV Tandem Accelerator
- Ion beams with high stability at low energies

Benjamin Heiss

- Energy reconstruction
- Point of first interaction
- Clustering Algorithms

ТΠ

γ spectra $E_p = 2.2 \text{ MeV}$

h_cal_energy_channel_8_0 Petal 2 Sum cal energy channel 8 0 Petal 2 Sum Entries 6.05303e+07 6.733114e+08 Entries Mean 1089 Moan 504 1581 Preliminary RMS Preliminary RMS 1254 10⁶ Underflow n Underflow Counts Counts n Overflow 5311 1.016e+06 Overflow 6.0520+07 Integral Integral 6.7230+08 2.653Skewness 3.937 Skewness Kurtosis 7.747 Kurtosis 17.97 10⁵ 10⁷ 19 Fl (p, $\alpha\gamma$) 16 O 10⁴ 10⁶ $^{27}\mathrm{Al}\ (\mathrm{p},\gamma)$ $^{28}\mathrm{Si}$ $^{19}\mathrm{Fl}\ (\mathrm{p},\alpha\gamma)$ $^{16}\mathrm{O}$ 10⁵ 10³ $^{27}\mathrm{Al}\ (\mathrm{p},\gamma)$ $^{28}\mathrm{Si}$ 10⁴ 10² 10³ 10 2000 12000 14000 0 4000 6000 8000 10000 2000 8000 10000 12000 14000 0 4000 6000 Energy (keV) Energy (keV)

Petal 2 sum vs HPGE

Correlations ²⁷Al(p,γ)²⁸Si

• ${}^{27}AI(p,\gamma){}^{28}Si$ with $E_{ex} = (11.59 + 2.2)$ MeV = 13.79 MeV

0

Petal 2 Sum GATE2 Petal 2 Sum GATE2 Coincidence with 1779 431126 Entries Mean 130.1 Counts keV in HPGe Detector RMS 743.9 E_{ex} Preliminary Underflow 0 4^{+} 53 Overflow 10⁵ 4.311e+05 integral Select 12 MeV γ here Skewness 8.535 90.44 Kurtosis $12011 \,\mathrm{keV}$ 10⁴ Look at pattern in petal Calibrate detector 10³ $1779\,\mathrm{keV}$ 94 Select 12 MeV without 10² 0^{+} 28 Si 10

12000 14000

Energy (keV)

Benjamin Heiss

cuts

6000

4000

8000 10000

Detection of charged particles

(p,2p) in direct kinematics

- Small Doppler shift of γ -rays
- Only stable isotopes for targets

Test experiment in St. Petersburg

- Well known system like ¹²C
- Test with heavy nucleus

ПΠ

- Possible with this setup?
- Signature w/o residual nucleus signal?
- Vacuum in target region?
- Optimum detector geometry?
- Which reaction?

Possible Target ⁴⁵Sc

Study reaction ⁴⁵Sc(p,2p)⁴⁴Ca

⁴⁵Sc is one proton away from the proton magic number 20

Enables to study shell structure of ⁴⁴Ca for different excited states (semi magic configuration)

 ${}^{45}\mathrm{Sc}\,(\mathrm{p},\mathrm{2p}){}^{44}\,\mathrm{Ca}$

Benjamin Heiss

ПΠ

 $^{45}\mathrm{Sc}\left(\mathrm{p,2p}\right)^{44}\mathrm{Ca}$

Benjamin Heiss

Benjamin Heiss

P-P coincidences in Demonstrator

 Primary rate
 Target rate
 Demo rate
 Rate per ch.
 (p,2p) rate

 10⁶ Hz
 24.7 kHz
 5.66 kHz
 22.1 Hz
 ~2.77 Hz

Benjamin Heiss

пп

62 Z

Benjamin Heiss

Benjamin Heiss

Summary (p,2p) experiment

Benjamin Heiss

Readout Overview

- Readout by Large Area Avalanche Photo Diodes
- Analog preamplification
- Completely digital, real-time signal processing
- GOSIP/FEBEX system by GSI
- 1.6 Gbps optical fibre readout

Readout Front-End Board with Optical Link Extension

- Universal hardware platform for CALIFA
- 16x 14-bit, 50 MS/s fast sampling ADCs
- Lattice ECP3 150 FPGA
- 1.6 Gbps optical fibre readout
- 8x MLVDS trigger bus
- Extension slot for add-on boards
- PCIe for create assembly
- · Continous sampling of input signal
- On-board real-time signal processing

Courtesy of M. Winkel

Benjamin Heiss

ПП

Readout Front-End Board with Optical Link Extension

Courtesy of M. Winkel

ПΠ
CEPA CALIFA End-Cap Phoswich Array

Most forward region of CALIFA

- Highest rates
- High background
- Highest energies
- Fast, high resolution phoswich array

PMT: Hamamatsu R7600U-200

8cm LaCl₃(Ce) $\tau = 28 \text{ ns}, \ \frac{\Delta E}{E} (662 \text{ keV}) \sim 3.5\%$

Benjamin Heiss

voltage in a.u.

Benjamin Heiss

TIM

CEPA Addon

Master Thesis Felix Stark

Add-on board:

- eight channels
- eight multiplexers (3 g)
- eight-channel DRS4 GHz chip
- eight integrators

Courtesy of F. Stark

ПΠ