

WP9-JRA1 PASPAG 1st Annual meeting 25.04.2017

http://www.iem.cfmac.csic.es/departamentos/nuclear/WEB-PASPAG/webstyle1/

Time	Activity	Convener	Institute
13:30:00	Welcome	Giulia HULL	IPN Orsay
13:35:00	ENSAR2 & PASPAG	Olof TENGBLAD	CSIC Madrid
13:55:00	Activity IPN	Giulia HULL	IPN Orsay
14:15:00	Activity IFJ PAN	Maria KMIECIK	IFJ PAN Krakow
14:35:00	Activity USC	Hector Alvarez Pol	USC Santiago
14:55:00	Activity York	Jamie BROWN	Univ. York
15:15:00	Activity SLCJ	Paweł J. NAPIORKOWSKI	SLCJ Univ Warsaw
15:35:00	Activity TUM	Roman GERNHÄUSER	TUM Munich
15:55:00	COFFEE		
16:15:00	COFFEE		
16:30:00	Discussion	Everyone	
	Discussion	Everyone	
	Discussion	Everyone	
	Discussion	Everyone	
17:45:00	Summary	Olof TENGBLAD	
18:00:00	END		

PRESENT at the meeting

Olof TENGBLAD	CSIC Madrid	ES
Hector Alvarez Pol	USC Santiago	ES
Roman GERNHÄUSER	TUM Munich	DE
Giulia HULL	IPN Orsay	FR
Iolanda MATEA	IPN Orsay	FR
Maria KMIECIK	IFJ PAN Krakow	PL
Adam MAJ	IFJ PAN Krakow	PL
Pawel KULESSA	IFJ PAN Krakow	PL
Paweł J. NAPIORKOWSKI	SLCJ Univ Warsaw	PL
Jamie Brown	Univ. York	UK

Questions to ENSAR2 Management:

Acknowledgement

This work was supported by the H2020-INFRAIA-2014–2015 Grant Agreement 654002 – ENSAR2-PASPAG

- Move money between personnel travel equipment → in principal OK send info to ENSAR
- Travel expenses of associates. → Letter from FISCO
- Deliverables: reports or hardware? → Photos of prototypes, delays leads to new amandments to contract agreement troublesome administration should be avoided
- Online reporting? → Only FISCO do this

AGENDA

- 1. ENSAR2 & PASPAG management
- 2. 1st year Activity of the participants
- 3. Discuss the future of the TASKs:
 - 1. Novel Scintillator Materials (INFN)
 - 2. Phoswich detectors (IFJ PAN)
 - Hybrid arrays and their applications
 (UoY)
- 4. GANAS archive?

PASPAG - Partners

Participation per Partner

Partner number and short nan	1e	WP9 effort	
2 - INFN	IT		18.00
5 - CNRS	FR	IPNO & IPHC	0.10
6 - GSI	PL		0.10
8 - IFJ PAN	PL		18.00
9 - UNIWARSAW	PL		0.10
10 - IFIN-HH	RO		6.00
25 - CSIC	ES	IEM	18.00
26 - USC	ES		15.00
29 - UoY	UK		6.00
	Total		81.30

PASPAG-Associates

Scintillator activity:CTH, TUM, TUDSEE activity (GSI):UCO & Univ. Rzeszow

PASPAG- Deliverables

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type 15	Disse 16 CONV		Due Date (in months) ¹⁷
D9.1	Report: present status of New Scintillator Materials and their basic characterisation (energy & time response)	25 - CSIC	Report	Public INI		12
D9.2	Report: Sensor characterization and Base design of hybrid detectors	25 - CSIC	Report	Public Uni Y	ORK	18
D9.3	Report: Scintillator response to gamma and particle radiation	25 - CSIC	Report	Public USC-	СТН	24
D9.4	Report: Digital pre-processing at frontend	25 - CSIC	Report	Public TUM	СТН	30
D9.5	Report: Design Phoswich Assemblies for homeland security	25 - CSIC	Report	Krakow-York	-IEM	36
D9.6	Report: Summary of test results	25 - CSIC	Report	Public IEN	VI -	48

D9.1 - STATUS OF NEW SCINTILLATOR MATERIALS AND THEIR BASIC CHARACTERIZATION 25.01.2017 Data from Task 1 by G. Hull & F. Camera prepared by O. Tengblad

Milestones

Schedule of relevant Milestones

Milestone number ¹⁸	Milestone title	Lead beneficiary	Due Date (in months)	Means of	convener
MS30	Crystal characterisation	25 - CSIC	12	Report	INFN IPNO
MS31	Scintillator readout Test-bench	25 - CSIC	18	Report	USC
MS32	Hybrid readout	25 - CSIC	24	R Uni Y	ORK-Krakow
MS33	Data processing	25 - CSIC	24	Report	FUM Warsaw
MS34	Imaging using segmented detector	25 - CSIC	36	Report	INFN IFIN-HH

M3.0 - CRYSTAL CHARACTERIZATION

20.02.2017 Data from Task 1 by G. Hull & F. Camera, prepared by O. Tengblad

Task1: Novel scintillator materials IPNO & INFN

New crystals for PASPAG

Cs₂LiLaBr₆:Ce → CLLB Elpasolite, same family as the CLYC (Li based)

- Neutron Gamma pulse shape and pulse height discrimination
- High efficiency for gamma rays and neutron

	Light Yield (ph/MeV)	Decay Constant (ns)	Wavelength of emission (nm)	ΔΕ/Ε @ 662 keV (%)	Propor.
CLLB Cs ₂ LiLaBr ₆ :Ce	60,000	55, ≥270	410	2.9	Good
CLYC Cs ₂ LiYCl ₆ :Ce	20,000	50, ~1000	390	3.9	Good

Two optics procured from Saint Gobain:

- \O1" x 1" delivered in 01/2017
- \O2" x 2" delivered in 03/2017

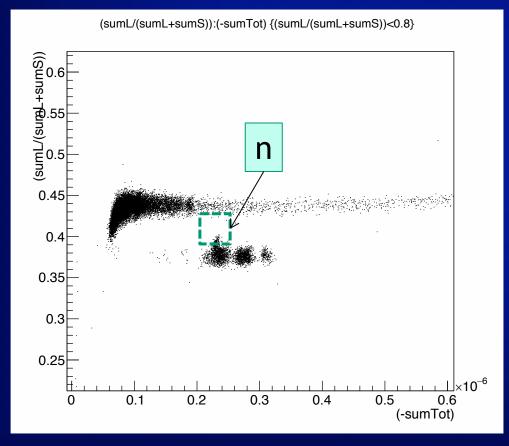
Novel scintillator materials IPNO & INFN

New crystals for PASPAG

LaBr₃:Ce, Sr - co-doped LaBr₃:Ce

• Co-doping is claimed to stabilize the growing process, thus possibly increasing the production rate with a consequent lowering of the price

• The co-doping process increases the light output and the crystal response proportionality and thus the energy resolution •The co-doping process increases the α - γ PSD


	Light Yield (ph/MeV)	Decay Constant (ns)	Wavelength of emission (nm)	ΔΕ/Ε @ 662 keV (%)	Propor.
LaBr ₃ :Ce,Sr	?	17-18, 60- 2500	390	2.7 As good as 2%	Good

One optic procured from Saint Gobain (the first ever quoted):

● 1" x 1" expected in late Q2, early Q3 2017

1"x1" CLLB - first results

Thermal neutrons from moderated ²⁵²Cf source PMT R6231-100 + Digital Oscilloscope

sumS between [-100, 300] ns sumL between [400, 2000]

Need a stronger source and/or more thermalisation

Funding

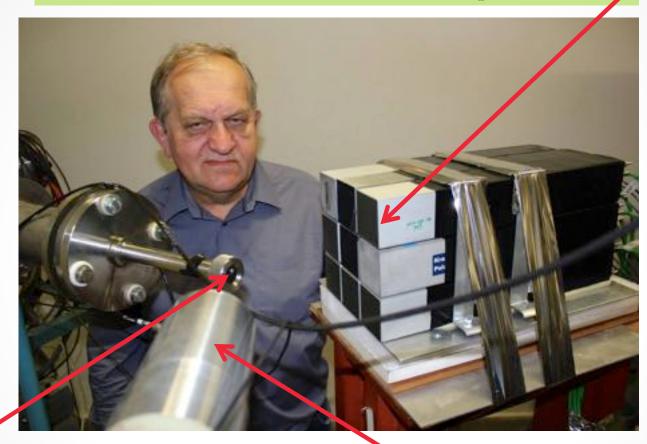
20k€ in three years

○ 1" x 1" CLLB	2500 €
⊗ 2" x 2" CLLB	4950 €
⊗ 1" x 1" LaBr3:Ce,Sr	6250 €

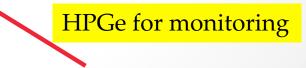
Task 1&2: Phoswich detectors (IFJ PAN) M. Kmiecik, A. Maj, P. Kulessa, M.Ciemała, M. Jastrząb, P. Napiorkowski, S. Brambilla, S. Kihel

Performed actions:

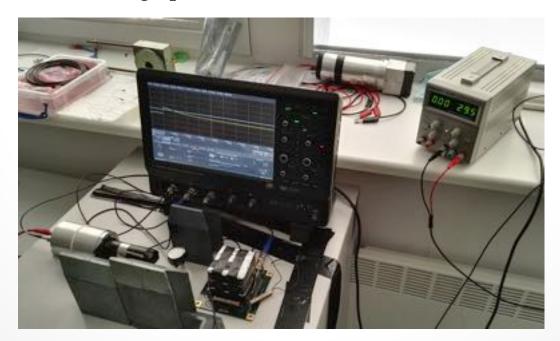
Measurement of the response of $CeBr_3+NaI:TI$ and $LaBr_3+NaI:TI$ phoswiches to high-energy γ rays


Planned actions:

- Testing response of the phoswiches and minicluster to protons
- Experiment prepared together with the Califa detectors, for July 2017 in Krakow


1st Annual PASPAG meeting Paris, 25.04.2017

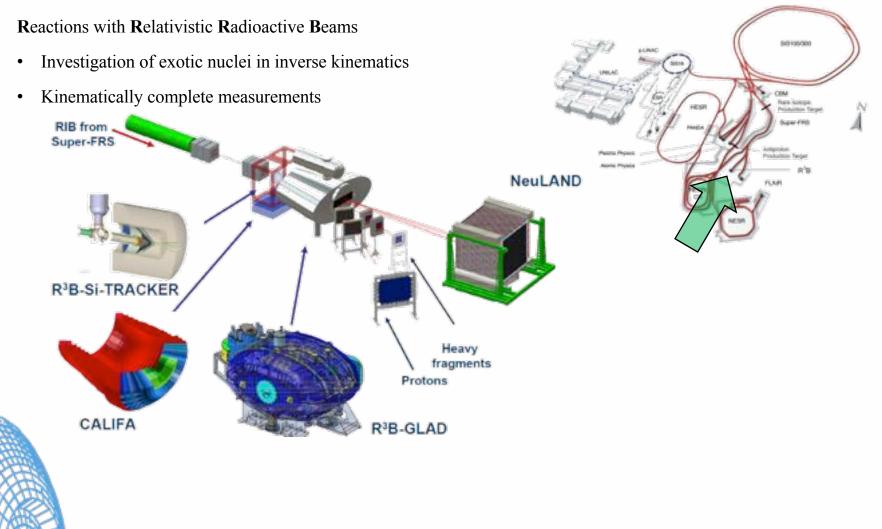
PARIS cluster; 4 LaBr/NaI & 5 CeBr/NaI phoswiches


Target for p,gamma reaction

Verification of novel readout for PARIS detectors, based on SiPM arrays (SENSL J-Series) together partner *Univ. York*

Measurement setup: Oscilloscope 12-bit Lecroy HDO6104 Sampling frequency: 2.5 GS/s Energy pulse polarization: positive SiPM J-series, bias voltage positive: +29.5V.

TUT


Task:2&3 Phoswich detector *readout with GHz sampling* using the FEBEX platform

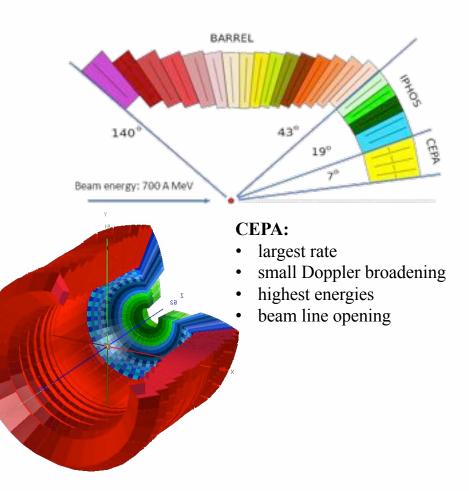
1st PASPAG Meeting, Paris 2017

R3B @ FAIR CEPA Readout Basic Concept using DRS4 First Prototype

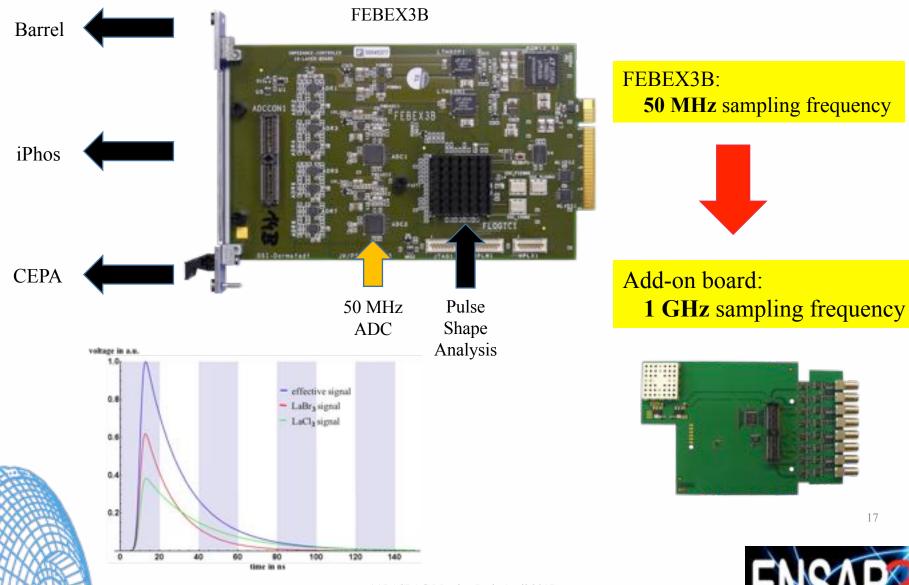
R³B @ FAIR

CALIFA Structural Design

Barrel:

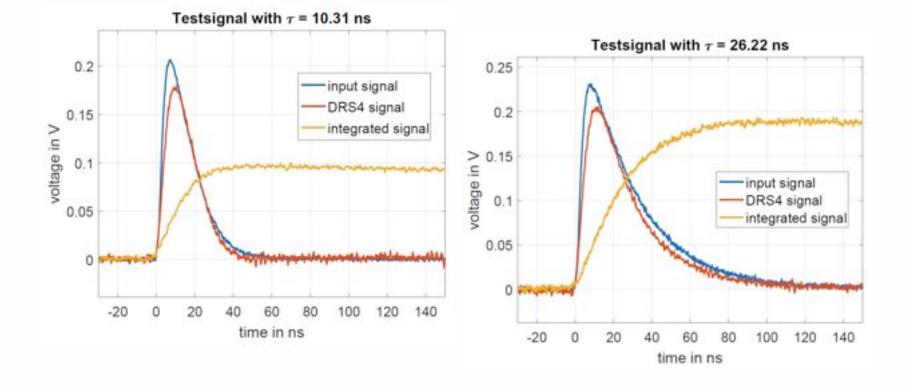

- 1952 CsI(Tl) scintillation crystals (0,7 μs + 3,3 μs)
- LAAPD readout
- Direct energy measurement of stopped protons up to ~300 MeV

iPhos:


- 512 CsI(Tl) crystals
- LAAPD readout
- Full energy reconstruction of punched through protons by PID

CEPA:

- 96 $LaBr_3$ (16 ns) + $LaCl_3$ (28 ns)
- Phoswich detectors + PMT/SiPM readout

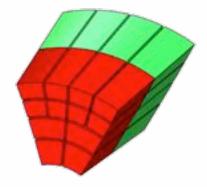

Task:2&3 → CALIFA Readout Phoswich detector *readout with GHz sampling* using the FEBEX

1st PASPAG Meeting Paris April 2017

Add-on Board Fast Signals

Felix Stark Master Thesis TUM

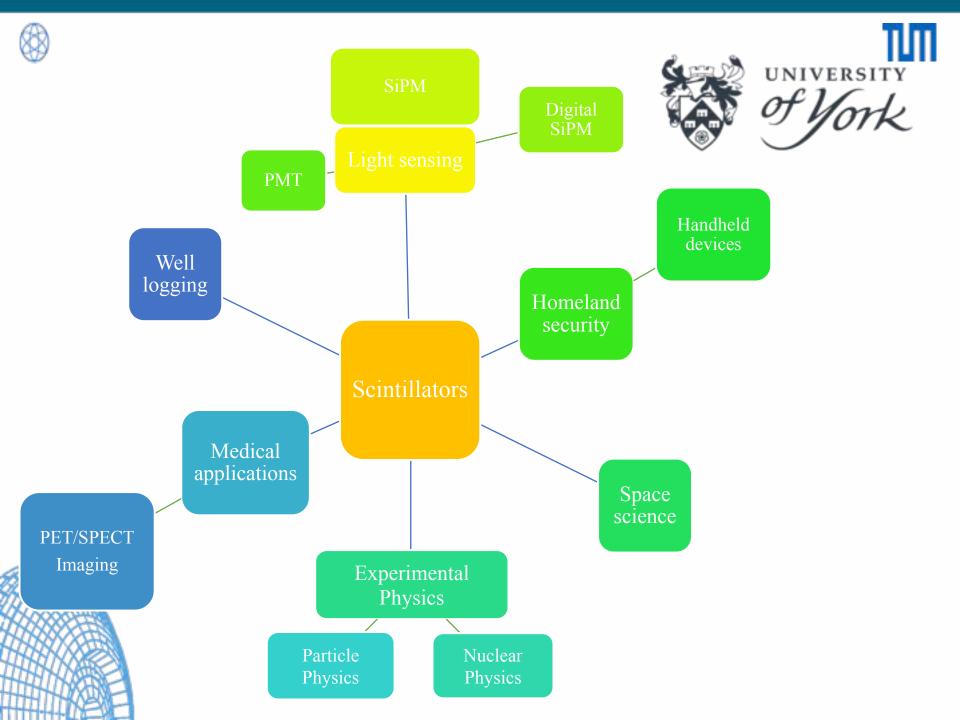
Summary / Outlook


- high-frequency signals preprocessed with only small deformation
- integrated signals used as trigger for DRS4 readout
- finish DRS4 firmware for full readout (Clock synch, timing.....)
- optimization of component values for usage of available range
- next revision of the DRS add-on board
- test experiment with 235 MeV protons in July 2017 in Krakow

The Team

CALIFA @ Technical University of Munich (TUM)

Felix Stark, Roman Gernhäuser, Benjamin Heiss, Philipp Klenze, Patrick Remmels and the CALIFA working group



Task 3: Hybrid arrays and their applications (UoY)

Jamie Brown

Application: Nuclear Security handheld devices

CsI coupled to SiPM


http://www.evproducts.com/sigma.html

Kromek D3S handheld device

CsI coupled to SiPM

Several thousand sold in US

- Fruitful collaboration with Kromek and other industry partners
 - Looking at applications for homeland security and medical imaging
- Common interest in scintillator detectors coupled to SiPM
- Commercially successful detector solution
- Projects on hygroscopic crystals coupled to SiPM
 - high-resolution performance
 - Wrapping, optical coupling and signal processing optimization
 - Pulse shape analysis using digital electronics
 - Position reconstruction and resolution
- Digital SiPM very promising solution for position sensitive measurements and very fast signals
- Detector developments for nuclear technology are very attractive for undergraduate student projects and several students are engaged in our research

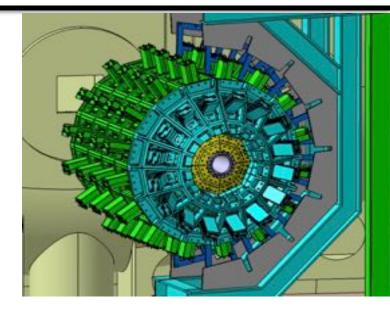
USC CONTRIBUTION TO PASPAG

H. Alvarez-Pol, D. Cortina, J. Benlliure, D. Gonzalez Departamento de Física de Particulas, IGFAE, USC.

FIRST ANNUAL PASPAG MEETING CNRS – Délégation Paris Michel-Ange PARIS – 25/04/2017

PASPAG Meeting, Paris, 25/04/2017

USC in PASPAG

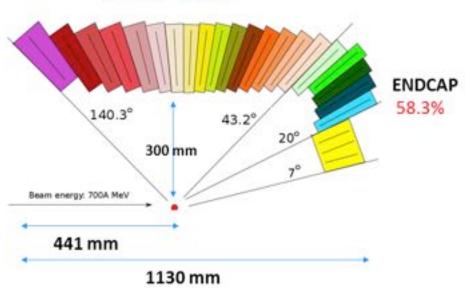

USC team for PASPAG

- 3 Proffesors.
- 4 PhD students.
- 1 Engineer.
- Looking for a Post-Doc!

Participation driven by our interest in the R³B (Reaction with Relativistic Radioactive Beams) experiment and, particularly, in the design and evaluation of the detector CALIFA.

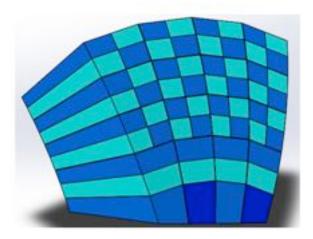
CALIFA calorimeter & spectrometer:

Photo Peak Eff.	40% (up to E γ =15 MeV projectile frame)
Calorimeter for HE LCP	200-700 MeV in lab system
ΔΕ/Ε	~5-6% (FWHM at Ey=1 MeV) , ~ 3% forward
LCP resolution	~2% (stopped particles), ~ 5% (punch through)

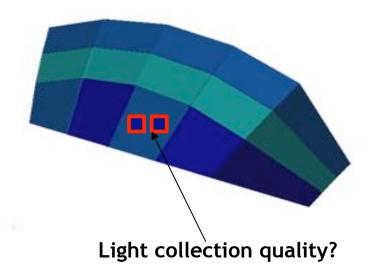


CALIFA design parameters

	Barrel	Endcap	
		iPhos	CEPA
Scintillator	CsI(Tl)	CsI(Tl)	LaBr/LaCl
Geometries	11	16	6
Length (cm)	15-22	22	7/8
Polar cov.	43-140º	20-43°	7-20°
Read-out	LAAPD	LAAPD	PM/SiPM
Det. units	1952	480	96
Ele. channels	1952	960	96
Weight (Kg)	~1500	~550	~50
Volume (cm ³)	285.000	90.000	11.000


Within PASPAG, contribute to the CALIFA Forward Endcap:

- I. iPhos: verification of the LAAPD coupling and performances for the new geometries.
- II. Tests of new phoswich detectors based on CsI(Tl).



USC Working plan I: coupling new geometries

Iphos issues

New design: \rightarrow crystals with different geometries... \rightarrow are the Hamamatsu S8664-1010-2 LAAPDs well suited??

ACTIONS:

- Construction of an iPhos sector prototype.
- Response / Light collection tests.

Related with:

- TASK 1 Novel scintillators.
- TASK 3 Hybrid arrays.

H. Alvarez Pol. USC contribution.

USC Working plan II: test new phoswichs

Iphos issues

New scintillator available GAGG:(Ce)

Density	6.63 g/cm3
Ene. resol.	5.1 % @ 662keV
Peak emm.	520 nm
Decay time	87 ns (90%) 255 ns (10%)
Hygroscopic	no

- Test the response with LAAPDs.
- Study possibilities for Phoswich GAGG-CsI(Tl).

ACTIONS:

- Purchase of GAGG samples (EPIC/AMCRYS): 1x1x1 cm / 1x1x5 cm / 1x1x10 cm
- Coupled to LAAPDs.
- Construction of phoswich prototypes.

Related with:

- TASK 1 Novel scintillators.
- TASK 2 Phoswich detectors.

H. Alvarez Pol. USC contribution.