

Ist Topical Workshop on Modern Aspects in Nuclear Structure Advances in Nuclear Structure with arrays including new scintillator detectors

BORMIO 22 - 25 February 2012

The gamma proton calorimeter for R³B

O. Tengblad IEM-CSIC

For the CALIFA WG and the R3B collaboration

Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

General introduction to R3B & CALIFA CALIFA CEPA Califa End Cap Array & Phoswich concept Simulations for Phoswich

R³B: Reactions with Relativistic Radioactive Beams

Kinematically complete measurement of reactions with high-energy secondary beams

- Nuclear Astrophysics
- Structure of exotic nuclei
- Neutron-rich matter

•A universal fixed-target experiment for complete inversekinematics reactions with relativistic RIBs (~300 - 1500 MeV/u),

•Experiments with the most exotic (<1 ion/s) and short-lived nuclei – exploring the isospin frontier at and beyond the driplines –

·Concept built on existing ALADIN-LAND experiment at GSI

Gamma/proton calorimeter surrounding the reaction target of R³B

- High-resolution γ spectrometer, relatively low-energy γ -rays (up to 2 MeV), consequently with low multiplicity (2-3). The energy resolution will be in this case the most critical parameter of CALIFA. This value has been set to be of $\Delta E/E < 6\%$ for 1 MeV, which allows to distinguish most of the simple gamma cascades that come from the de-excitation of light exotic nuclei.
 - **knock-out reactions** employing light, radioactive beams **highly Segmented**
- γ calorimeter, very energetic γ-rays (up to 10 MeV) and associated with fragmented decays (high-multiplicity events). In this case the key parameters will be its Total absorption (intrinsic photopeak efficiency), sum energy and multiplicities. A typical reaction that will profit from

pygme (or giant)-resonance decays

 \rightarrow

addback, little dead material

• Hybrid detector simultaneously good calorimetric properties together with high-resolution for highly energetic light charged particles (protons up to 300 MeV)

quasi-free scattering (p,2p),(p,pn).... →

good energy resolution + huge dynamic range $\gamma \& p \rightarrow$ Time-over-threshold

Design of CALIFA

High energy reaction \rightarrow forward emission

- Backward angles >130^o open for access (liquid target/electronics)
- BARREL $40 130^{\circ} \rightarrow CsI(TI) + LAAPD$
- FORWARD ENDCAP 6-40° \rightarrow improved angular and energy resolution,

thinner/longer crystals, phoswich?

DESIGN/SIMULATIONS OF BARREL

Following Presentation

H. Alvarez-Pol (Univ. Santiago de Compostela, Spain) Design and simulation of a calorimeter/spectrometer for the R3B setup: the CALIFA BARREL

Inner radius	30 cm
Numb. of crystals	1952
Diff. crystal geometries	31
Crystal weight (CsI(Tl))	$\approx 2000~{\rm kg}$

CRYSTALS HAVE BEEN TESTED EXTENSIVELY

Following Presentation

B. Pietras* (GENP-USC, Spain) *The DemoZero for CALIFA BARREL: experimental and simulated results*

PreAmp solution

Mixed concept with analog bias regulated PA , followed by digital electronics

Talk by:T. Le Bleis * (T.U. Munich)PID and plastic phoswitch for CALIFA for R3B

MPRB-16 16 channel charge sensitive preamplifier with integrated bias voltage generators.

- Remote controllable via mesytec control bus
- Voltages integrated individually for each channel in 100 mV steps, up to 600 V.
- Temperature sensor to compensate the APD gain drift with temperature by regulating the bias voltage.

Forward EndCap Possible solution a Δ E-E telescope?

eemont.

Forward EndCap crystal solution - Phoswich

Question to be answered:

EJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

- Depth of first interaction
- Depth @ 90% incident energy absorbed

How many neighbouring crystals are being hit?

Protons:

Using two ∆Edetectors one can determine the full proton energy with a resolution of <5%.

Gammas:

Second detector placed to solve the ambiguity on the signal

Laboratory tests with 1:st prototype

Phoswich: SaintGobain LaBr₃(Ce)+LaCl₃(Ce) Φ 20mm x (30+50)mm²

PM-tube: Hamamatsu R5380 6 dynodes 300-650 nm

PA: Mesytec MPR1-PMT

Phoswich vs single crystal

The resolution for the LaBr3(Ce) response in the phoswich compared to an individual crystal. As seen the phoswich conguration does not deteriorate the resolution. The high energy points where taken shooting 1 MeV p on Teflon.

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Phoswich detector response to 150 & 180 MeV protons @ The Swedberg Lab. Uppsala

Digital: Anode → Sampling ADC 1 Gs/s MATACQ32 from M2J Saclay → off-line PSA Analog: Dynode →Mesytec MPR1-PMT → Mesytec STM-16 → Caen V785 ADC

Phoswich response to gammas and protons Huge dynamic range 200 KeV $\gamma \rightarrow$ 200 MeV p the same digital electronic settings and PM voltage

228Th gamma source $E_{\gamma} = 200 - 2600 \text{ KeV}$

150 + 180 MeV Protons

Simulation of obtained data

GEANT4 simulartion of the Experiment at TSL

- Proton energy: 180 MeV before leaving the beam-pipe, after the Al cylinder with hole → ≈150 & 180 MeV
- Detector $LaBr_3(Ce) + LaCl_3(Ce)$ cylinder: $2cm \times (3 + 5) cm^2$
- Physics list:

Low Energy EM processes (Livermore) for gamma-rays,

electrons and positrons. Bertini Intranuclear Cascade for hadrons.

Results

- •Energy deposited in $LaCl_3$ vs Energy deposited in $LaBr_3$.
- •Data from off-line Pulse Shape Analysis.
- •Experimental data overlayed with Geant4 simulation.

150 & 180 MeV protons

• Energy spectrum adding up the total energy deposited in both crystals Experiment in RED, Geant4 in BLUE

Simulations: Design of 2nd Prototype

Arrived X-mas 2011

• Energy spectrum for E=240 MeV protons as $\Sigma (\Delta E_1 + \Delta E_2)$

Protons in prototype "CEPA"

GEANT4 simulations

- TEFLON 1 mm between crystals and at the entrance window
- Hadronic processes included.
- Energy resolution included (experimental).

Protons in CEPA

Protons in CEPA

Detector considerations

Calorimetry: Geometry to absorb Gamma-rays

Gamma radiation average energy deposit per event inside an infinite volume of LaBr detector

Considering an infinite volume of LaBr₃ 87% of the gamma energy at 20 MeV is deposited within a rectangular prism of 15 cm length 10x10 mm² entrance area

→ 91 % efficiency with full add-back from "neigbouring" rectangles

Spectroscopy: Optimize "Photo-peak" efficiency

Maximum distance between interactions - absorbing one incident gamma inside a crystal 10x10x150mm³

Photopeak	effici	ency	full add-back
@ 10 MeV	36 %	\rightarrow	74 %
@ 20 MeV	16 %	\rightarrow	66 %
@ 30 MeV	7 %	\rightarrow	56 %

CEPA 1.0 to be tested 2012

• R³B - Reactions with relativistic radioactive beams yield unique possibilities for studies of nuclear systems at the extremes

Summary

- CALIFA is a versatile γ / p detector for the R3B setup at FAIR
 - CALIFA Barrel TDR was handed in dec. 2011

(more in following talks)

- CEPA: Califa End Cap Array on going R&D
 - Mechanical and geometrical design exist
 - Phoswich solution is the most probable
 - LaBr+LaCl phoswich has been tested and simulated as a possible solution

	6	Particle Physics Department University of Santiago de Compostela				
GEN	H. Alvarez-Pol, J. Benlliure, D. Cortina, I. Durán, Martín Gascón D. González, N. Montes, B. Pietras					
	CIMA, E: Ind	scuela Técnica Superior de Ingenieros dustriales, Universidade de Vigo	CIMA			
	J.A.	Vilán Vilán, P. Yañez, E. Casarejos	JNIVERSIDAD DE VIGO			
7259		Subatomic Physics Chalmers University of Technolog	gy , Göteborg			
		T. Nilsson, H. Johansson				
TU Darmstadt		N. Pietralla, Th. Kroell				
TU Munich		R. Gernhäuser, T. de Bleis, M. Bendel, S. Winkel				
	Univ. Lun	d J. Cedekäll, V.Avdeichikov, Bo Jacobsoon.				
LUNDS UNIVERSITET						
	Instituto de Estructura de la Materia, CSIC-Madrid					
	N	.J.G Borge, J.A. Briz, E. Nácher, J. Sánchez del Río, J. Sánchez Rosado A. Perea, O. Tengblad	Grupo de Física Nuclear Experimental IEM			

Thank you for the attention!

Spectrum of a ¹³⁷Cs source measured with a CsI(Tl)-crystal and read out by an Hamamatsu S8664-1010 LAAPD.

$$\frac{1}{G}\frac{dG}{dT} = -2.95\frac{\%}{\circ C} \qquad \qquad \frac{1}{G}\frac{dG}{dU} = 2.5\frac{\%}{V}.$$

Gain gradient due to continuous heating of the LAAPD from 11 to 23 °C

Temperature regulated in the range of 6 to 24 °C

Talk by

T. Le Bleis * (T.U. Munich) *PID and plastic phoswitch for CALIFA for R3B*

